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1 Introduction

Product Overview
Symbolic Math Toolbox™ software lets you to perform symbolic computations
within the MATLAB® numeric environment. It provides tools for solving and
manipulating symbolic math expressions and performing variable-precision
arithmetic. The toolbox contains hundreds of symbolic functions that leverage
the MuPAD® engine for a broad range of mathematical tasks such as:

• Differentiation

• Integration

• Linear algebraic operations

• Simplification

• Transforms

• Variable-precision arithmetic

• Equation solving

Symbolic Math Toolbox software also includes the MuPAD language, which
is optimized for handling and operating on symbolic math expressions. In
addition to covering common mathematical tasks, the libraries of MuPAD
functions cover specialized areas such as number theory and combinatorics.
You can extend the built-in functionality by writing custom symbolic functions
and libraries in the MuPAD language.

If you have a version of Maple™ software compatible with the Symbolic Math
Toolbox software that you are using, you can use that instead of MuPAD
software. See “Choosing a Maple or MuPAD Engine” on page 4-34.
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Accessing Symbolic Math Toolbox™ Functionality

Accessing Symbolic Math Toolbox Functionality

Key Features
Symbolic Math Toolbox software provides a complete set of tools for symbolic
computing that augments the numeric capabilities of MATLAB. The toolbox
includes extensive symbolic functionality that you can access directly from
the MATLAB command line or from the MuPAD Notebook Interface. You can
extend the functionality available in the toolbox by writing custom symbolic
functions or libraries in the MuPAD language.

Working from MATLAB
You can access the Symbolic Math Toolbox functionality directly from the
MATLAB Command Window. This environment lets you call functions using
familiar MATLAB syntax.

The MATLAB Help browser presents the documentation that covers working
from the MATLAB Command Window. To access the MATLAB Help browser,
you can:

• Select Help > Product Help , and then select Symbolic Math Toolbox
in the left pane

• Enter doc at theMATLAB command line

If you are a new user, begin with Chapter 2, “Getting Started”

Working from MuPAD
Also you can access the Symbolic Math Toolbox functionality from the MuPAD
Notebook Interface using the MuPAD language. The MuPAD Notebook
Interface includes a symbol palette for accessing common MuPAD functions.
All results are displayed in typeset math. You also can convert the results
into MathML and TeX. You can embed graphics, animations, and descriptive
text within your notebook.

An editor, debugger, and other programming utilities provide tools for
authoring custom symbolic functions and libraries in the MuPAD language.
The MuPAD language supports multiple programming styles including
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1 Introduction

imperative, functional, and object-oriented programming. The language treats
variables as symbolic by default and is optimized for handling and operating
on symbolic math expressions. You can call functions written in the MuPAD
language from the MATLAB Command Window. For more information see
“Calling MuPAD Functions at the MATLAB Command Line” on page 4-27

The MuPAD Help browser presents documentation covering the MuPAD
Notebook Interface. To access the MuPAD Help browser :

• From the MuPAD Notebook Interface, select Help > Open Help

• From the MATLAB Command Window, enter doc(symengine).

If you are a new user of the MuPAD Notebook Interface, read the Getting
Started chapter of the MuPAD documentation.

There is also a MuPAD Tutorial PDF file available at
http://www.mathworks.com/access/helpdesk/...
help/pdf_doc/symbolic/mupad_tutorial.pdf .

1-4
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2 Getting Started

Symbolic Objects

In this section...

“Overview” on page 2-2

“Symbolic Variables” on page 2-2

“Symbolic Numbers” on page 2-3

Overview
Symbolic objects are a special MATLAB data type introduced by the Symbolic
Math Toolbox software. They allow you to perform mathematical operations
in the MATLAB workspace analytically, without calculating numeric
values. You can use symbolic objects to perform a wide variety of analytical
computations:

• Differentiation, including partial differentiation

• Definite and indefinite integration

• Taking limits, including one-sided limits

• Summation, including Taylor series

• Matrix operations

• Solving algebraic and differential equations

• Variable-precision arithmetic

• Integral transforms

Symbolic objects present symbolic variables, symbolic numbers, symbolic
expressions and symbolic matrices.

Symbolic Variables
To declare variables x and y as symbolic objects use the syms command:

syms x y
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Symbolic Objects

You can manipulate the symbolic objects according to the usual rules of
mathematics. For example:

x + x + y

ans =
2*x + y

You also can create formal symbolic mathematical expressions and symbolic
matrices. See “Creating Symbolic Variables and Expressions” on page 2-6
for more information.

Symbolic Numbers
Symbolic Math Toolbox software also enables you to convert numbers to
symbolic objects. To create a symbolic number, use the sym command:

a = sym('2')

If you create a symbolic number with 10 or fewer decimal digits, you can
skip the quotes:

a = sym(2)

The following example illustrates the difference between a standard
double-precision MATLAB data and the corresponding symbolic number.
The MATLAB command

sqrt(2)

returns a double-precision floating-point number:

ans =
1.4142

On the other hand, if you calculate a square root of a symbolic number 2:

a = sqrt(sym(2))

you get the precise symbolic result:

a =
2^(1/2)

2-3



2 Getting Started

Symbolic results are not indented. Standard MATLAB double-precision
results are indented. The difference in output form shows what type of data is
presented as a result.

To evaluate a symbolic number numerically, use the double command:

double(a)

ans =
1.4142

You also can create a rational fraction involving symbolic numbers:

sym(2)/sym(5)

ans =
2/5

or more efficiently:

sym(2/5)

ans =
2/5

MATLAB performs arithmetic on symbolic fractions differently than it does
on standard numeric fractions. By default,MATLAB stores all numeric values
as double-precision floating-point data. For example:

2/5 + 1/3

ans =
0.7333

If you add the same fractions as symbolic objects, MATLAB finds their
common denominator and combines them in the usual procedure for adding
rational numbers:

sym(2/5) + sym(1/3)

ans =
11/15
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Symbolic Objects

To learn more about symbolic representation of rational and decimal fractions,
see “Estimating the Precision of Numeric to Symbolic Conversions” on page
2-17.
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2 Getting Started

Creating Symbolic Variables and Expressions

In this section...

“Creating Symbolic Variables” on page 2-6

“Creating Symbolic Expressions” on page 2-7

“Creating Symbolic Objects with Identical Names” on page 2-8

“Creating a Matrix of Symbolic Variables” on page 2-9

“Creating a Matrix of Symbolic Numbers” on page 2-10

“Finding Symbolic Variables in Expressions and Matrices” on page 2-10

Creating Symbolic Variables
The sym command creates symbolic variables and expressions. For example,
the commands

x = sym('x');
a = sym('alpha');

create a symbolic variable x with the value x assigned to it in the MATLAB
workspace and a symbolic variable a with the value alpha assigned to it. An
alternate way to create a symbolic object is to use the syms command:

syms x;
a = sym('alpha');

You can use sym or syms to create symbolic variables. The syms command:

• Does not use parentheses and quotation marks: syms x

• Can create multiple objects with one call

• Serves best for creating individual single and multiple symbolic variables

The sym command:
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Creating Symbolic Variables and Expressions

• Requires parentheses and quotation marks: x = sym('x'). When creating
a symbolic number with 10 or fewer decimal digits, you can skip the
quotation marks: f = sym(5).

• Creates one symbolic object with each call.

• Serves best for creating symbolic numbers and symbolic expressions.

• Serves best for creating symbolic objects in functions and scripts.

Note In Symbolic Math Toolbox, pi is a reserved word.

Creating Symbolic Expressions
Suppose you want to use a symbolic variable to represent the golden ratio

 = +1 5
2

The command

rho = sym('(1 + sqrt(5))/2');

achieves this goal. Now you can perform various mathematical operations
on rho. For example,

f = rho^2 - rho - 1

returns

f =
(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2

Now suppose you want to study the quadratic function f = ax2 + bx + c. One
approach is to enter the command

f = sym('a*x^2 + b*x + c');

which assigns the symbolic expression ax2 + bx + c to the variable f. However,
in this case, Symbolic Math Toolbox software does not create variables
corresponding to the terms of the expression: a, b, c, and x. To perform
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2 Getting Started

symbolic math operations on f, you need to create the variables explicitly. A
better alternative is to enter the commands

a = sym('a');
b = sym('b');
c = sym('c');
x = sym('x');

or simply

syms a b c x

Then, enter

f = a*x^2 + b*x + c;

Note To create a symbolic expression that is a constant, you must use the sym
command. Do not use syms command to create a symbolic expression that is a
constant. For example, to create the expression whose value is 5, enter f =
sym(5). The command f = 5 does not define f as a symbolic expression.

Creating Symbolic Objects with Identical Names
If you set a variable equal to a symbolic expression, and then apply the syms
command to the variable, MATLAB software removes the previously defined
expression from the variable. For example,

syms a b;
f = a + b

returns

f =
a + b

If later you enter

syms f;
f

then MATLAB removes the value a + b from the expression f:
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Creating Symbolic Variables and Expressions

f =
f

You can use the syms command to clear variables of definitions that you
previously assigned to them in your MATLAB session. However, syms does
not clear the following assumptions of the variables: complex, real, and
positive. These assumptions are stored separately from the symbolic object.
See “Deleting Symbolic Objects and Their Assumptions” on page 2-31 for
more information.

Creating a Matrix of Symbolic Variables
A circulant matrix has the property that each row is obtained from the
previous one by cyclically permuting the entries one step forward. You can
create the symbolic circulant matrix A whose elements are a, b, and c, using
the commands:

syms a b c;
A = [a b c; c a b; b c a]

A =
[ a, b, c]
[ c, a, b]
[ b, c, a]

Since the matrix A is circulant, the sum of elements over each row and each
column is the same. Find the sum of all the elements of the first row:

sum(A(1,:))

ans =
a + b + c

Check if the sum of the elements of the first row equals the sum of the
elements of the second column:

sum(A(1,:)) == sum(A(:,2))

The sums are equal:

ans =
1
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2 Getting Started

From this example, you can see that using symbolic objects is very similar to
using regular MATLAB numeric objects.

Creating a Matrix of Symbolic Numbers
A particularly effective use of sym is to convert a matrix from numeric to
symbolic form. The command

A = hilb(3)

generates the 3-by-3 Hilbert matrix:

A =
1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

By applying sym to A

A = sym(A)

you can obtain the precise symbolic form of the 3-by-3 Hilbert matrix:

A =
[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

For more information on numeric to symbolic conversions see “Estimating the
Precision of Numeric to Symbolic Conversions” on page 2-17.

Finding Symbolic Variables in Expressions and
Matrices
To determine what symbolic variables are present in an expression, use
the symvar command. For example, given the symbolic expressions f and
g defined by

syms a b n t x z;
f = x^n;
g = sin(a*t + b);

2-10



Creating Symbolic Variables and Expressions

you can find the symbolic variables in f by entering:

symvar(f)

ans =
[ n, x]

Similarly, you can find the symbolic variables in g by entering:

symvar(g)

ans =
[ a, b, t]
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2 Getting Started

Performing Symbolic Computations

In this section...

“Simplifying Symbolic Expressions” on page 2-12

“Substituting in Symbolic Expressions” on page 2-14

“Estimating the Precision of Numeric to Symbolic Conversions” on page 2-17

“Differentiating Symbolic Expressions” on page 2-19

“Integrating Symbolic Expressions” on page 2-21

“Solving Equations” on page 2-23

“Finding a Default Symbolic Variable” on page 2-25

“Creating Plots of Symbolic Functions” on page 2-25

Simplifying Symbolic Expressions
Symbolic Math Toolbox provides a set of simplification functions allowing you
to manipulate an output of a symbolic expression. For example, the following
polynomial of the golden ratio rho

rho = sym('(1 + sqrt(5))/2');
f = rho^2 - rho - 1

returns

f =
(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2

You can simplify this answer by entering

simplify(f)

and get a very short answer:

ans =
0
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Symbolic simplification is not always so straightforward. There is no universal
simplification function, because the meaning of a simplest representation of
a symbolic expression cannot be defined clearly. Different problems require
different forms of the same mathematical expression. Knowing what form
is more effective for solving your particular problem, you can choose the
appropriate simplification function.

For example, to show the order of a polynomial or symbolically differentiate
or integrate a polynomial, use the standard polynomial form with all the
parenthesis multiplied out and all the similar terms summed up. To rewrite a
polynomial in the standard form, use the expand function:

syms x;
f = (x ^2- 1)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1);
expand(f)

ans =
x^10 - 1

The factor simplification function shows the polynomial roots. If a
polynomial cannot be factored over the rational numbers, the output of the
factor function is the standard polynomial form. For example, to factor the
third-order polynomial, enter:

syms x;
g = x^3 + 6*x^2 + 11*x + 6;
factor(g)

ans =
(x + 3)*(x + 2)*(x + 1)

The nested (Horner) representation of a polynomial is the most efficient for
numerical evaluations:

syms x;
h = x^5 + x^4 + x^3 + x^2 + x;
horner(h)

ans =
x*(x*(x*(x*(x + 1) + 1) + 1) + 1)
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For a list of Symbolic Math Toolbox simplification functions, see
“Simplifications” on page 3-42.

Substituting in Symbolic Expressions

subs Command
You can substitute a numeric value for a symbolic variable or replace one
symbolic variable with another using the subs command. For example, to
substitute the value x = 2 in the symbolic expression

syms x;
f = 2*x^2 - 3*x + 1;

enter the command

subs(f, 2)

ans =
3

Substituting in Multivariate Expressions
When your expression contains more than one variable, you can specify
the variable for which you want to make the substitution. For example, to
substitute the value x = 3 in the symbolic expression

syms x y;
f = x^2*y + 5*x*sqrt(y);

enter the command

subs(f, x, 3)

ans =
9*y + 15*y^(1/2)

Substituting One Symbolic Variable for Another
You also can substitute one symbolic variable for another symbolic variable.
For example to replace the variable y with the variable x, enter
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subs(f, y, x)

ans =
x^3 + 5*x^(3/2)

Substituting a Matrix into a Polynomial
You can also substitute a matrix into a symbolic polynomial with numeric
coefficients. There are two ways to substitute a matrix into a polynomial:
element by element and according to matrix multiplication rules.

Element-by-Element Substitution. To substitute a matrix at each element,
use the subs command:

A = [1 2 3;4 5 6];
syms x; f = x^3 - 15*x^2 - 24*x + 350;
subs(f,A)

ans =
312 250 170
78 -20 -118

You can do element-by-element substitution for rectangular or square
matrices.

Substitution in a Matrix Sense. If you want to substitute a matrix into
a polynomial using standard matrix multiplication rules, a matrix must be
square. For example, you can substitute the magic square A into a polynomial
f:

1 Create the polynomial:

syms x;
f = x^3 - 15*x^2 - 24*x + 350;

2 Create the magic square matrix:

A = magic(3)

A =
8 1 6
3 5 7

2-15



2 Getting Started

4 9 2

3 Get a row vector containing the numeric coefficients of the polynomial f:

b = sym2poly(f)

b =
1 -15 -24 350

4 Substitute the magic square matrix A into the polynomial f. Matrix A
replaces all occurrences of x in the polynomial. The constant times the
identity matrix eye(3) replaces the constant term of f:

A^3 - 15*A^2 - 24*A + 350*eye(3)

ans =
-10 0 0

0 -10 0
0 0 -10

The polyvalm command provides an easy way to obtain the same result:

polyvalm(sym2poly(f),A)

ans =
-10 0 0

0 -10 0
0 0 -10

Substituting the Elements of a Symbolic Matrix
To substitute a set of elements in a symbolic matrix, also use the subs
command. Suppose you want to replace some of the elements of a symbolic
circulant matrix A

syms a b c;
A = [a b c; c a b; b c a]

A =
[ a, b, c]
[ c, a, b]
[ b, c, a]
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To replace the (2, 1) element of A with beta and the variable b throughout
the matrix with variable alpha, enter

alpha = sym('alpha');
beta = sym('beta');
A(2,1) = beta;
A = subs(A,b,alpha)

The result is the matrix:

A =
[ a, alpha, c]
[ beta, a, alpha]
[ alpha, c, a]

For more information on the subs command see “Substitutions” on page 3-53.

Estimating the Precision of Numeric to Symbolic
Conversions
The sym command converts a numeric scalar or matrix to symbolic form. By
default, the sym command returns a rational approximation of a numeric
expression. For example, you can convert the standard double-precision
variable into a symbolic object:

t = 0.1;
sym(t)

ans =
1/10

The technique for converting floating-point numbers is specified by the
optional second argument, which can be 'f', 'r', 'e' or 'd'. The default
option is 'r' that stands for rational approximation“Converting to Rational
Symbolic Form” on page 2-18.

Converting to Floating-Point Symbolic Form
The 'f' option to sym converts a double-precision floating-point number to a
sum of two binary numbers. All values are represented as rational numbers
N*2^e, where e and N are integers, and N is nonnegative. For example,
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sym(t, 'f')

returns the symbolic floating-point representation:

ans =
3602879701896397/36028797018963968

Converting to Rational Symbolic Form
If you call sym command with the 'r' option

sym(t, 'r')

you get the results in the rational form:

ans =
1/10

This is the default setting for the sym command. If you call this command
without any option, you get the result in the same rational form:

sym(t)

ans =
1/10

Converting to Rational Symbolic Form with Machine Precision
If you call the sym command with the option 'e', it returns the rational form
of t plus the difference between the theoretical rational expression for t and
its actual (machine) floating-point value in terms of eps (the floating-point
relative accuracy):

sym(t, 'e')

ans =
eps/40 + 1/10

Converting to Decimal Symbolic Form
If you call the sym command with the option 'd', it returns the decimal
expansion of t up to the number of significant digits:

2-18



Performing Symbolic Computations

sym(t, 'd')

ans =
0.10000000000000000555111512312578

By default, the sym(t,'d') command returns a number with 32 significant
digits. To change the number of significant digits, use the digits command:

digits(7);
sym(t, 'd')

ans =
0.1

Differentiating Symbolic Expressions
With the Symbolic Math Toolbox software, you can find

• Derivatives of single-variable expressions

• Partial derivatives

• Second and higher order derivatives

• Mixed derivatives

For in-depth information on taking symbolic derivatives see “Differentiation”
on page 3-2.

Expressions with One Variable
To differentiate a symbolic expression, use the diff command. The following
example illustrates how to take a first derivative of a symbolic expression:

syms x;
f = sin(x)^2;
diff(f)

ans =
2*cos(x)*sin(x)
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Partial Derivatives
For multivariable expressions, you can specify the differentiation variable.
If you do not specify any variable, MATLAB chooses a default variable by
the proximity to the letter x:

syms x y;
f = sin(x)^2 + cos(y)^2;
diff(f)

ans =
2*cos(x)*sin(x)

For the complete set of rules MATLAB applies for choosing a default variable,
see “Finding a Default Symbolic Variable” on page 2-25.

To differentiate the symbolic expression f with respect to a variable y, enter:

syms x y;
f = sin(x)^2 + cos(y)^2;
diff(f, y)

ans =
(-2)*cos(y)*sin(y)

Second Partial and Mixed Derivatives
To take a second derivative of the symbolic expression f with respect to a
variable y, enter:

syms x y;
f = sin(x)^2 + cos(y)^2;
diff(f, y, 2)

ans =
2*sin(y)^2 - 2*cos(y)^2

You get the same result by taking derivative twice: diff(diff(f, y)). To
take mixed derivatives, use two differentiation commands. For example:

syms x y;
f = sin(x)^2 + cos(y)^2;
diff(diff(f, y), x)
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ans =
0

Integrating Symbolic Expressions
You can perform symbolic integration including:

• Indefinite and definite integration

• Integration of multivariable expressions

For in-depth information on the int command including integration with real
and complex parameters, see “Integration” on page 3-12.

Indefinite Integrals of One-Variable Expressions
Suppose you want to integrate a symbolic expression. The first step is to
create the symbolic expression:

syms x;
f = sin(x)^2;

To find the indefinite integral, enter

int(f)

ans =
x/2 - sin(2*x)/4

Indefinite Integrals of Multivariable Expressions
If the expression depends on multiple symbolic variables, you can designate a
variable of integration. If you do not specify any variable, MATLAB chooses a
default variable by the proximity to the letter x:

syms x y n;
f = x^n + y^n;
int(f)

ans =
x*y^n + (x*x^n)/(n + 1)
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For the complete set of rules MATLAB applies for choosing a default variable,
see “Finding a Default Symbolic Variable” on page 2-25.

You also can integrate the expression f = x^n + y^n with respect to y

syms x y n;
f = x^n + y^n;
int(f, y)

ans =
x^n*y + (y*y^n)/(n + 1)

If the integration variable is n, enter

syms x y n;
f = x^n + y^n;
int(f, n)

ans =
x^n/log(x) + y^n/log(y)

Definite Integrals
To find a definite integral, pass the limits of integration as the final two
arguments of the int function:

syms x y n;
f = x^n + y^n;
int(f, 1, 10)

ans =
piecewise([n = -1, log(10) + 9/y],...
[n <> -1, (10^(n + 1) - 1)/(n + 1) + 9*y^n])

If MATLAB Cannot Find a Closed Form of an Integral
If the int function cannot compute an integral, MATLAB issues a warning
and returns the int function as an answer:

syms x y n;
f = exp(x)^n + exp(y)^n;
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int(f, n, 1, 10)

Warning: Explicit integral could not be found.

ans =
int(exp(x)^n + exp(y)^n, n = 1..10)

Solving Equations
You can solve different types of symbolic equations including:

• Algebraic equations with one symbolic variable

• Algebraic equations with several symbolic variables

• Systems of algebraic equations

For in-depth information on solving symbolic equations including differential
equations, see “Solving Equations” on page 3-93.

Algebraic Equations with One Symbolic Variable
You can find the values of variable x for which the following expression
is equal to zero:

syms x;
solve(x^3 - 6*x^2 + 11*x - 6)

ans =
1
2
3

By default, the solve command assumes that the right-side of the equation is
equal to zero. If you want to solve an equation with a nonzero right part, use
quotation marks around the equation:

syms x;
solve('x^3 - 6*x^2 + 11*x - 5 = 1')

ans =
1
2
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3

Algebraic Equations with Several Symbolic Variables
If an equation contains several symbolic variables, you can designate a
variable for which this equation should be solved. For example, you can solve
the multivariable equation:

syms x y;
f = 6*x^2 - 6*x^2*y + x*y^2 - x*y + y^3 - y^2;

with respect to a symbolic variable y:

solve(f, y)

ans =
1

2*x
(-3)*x

If you do not specify any variable, you get the solution of an equation for the
alphabetically closest to x variable. For the complete set of rules MATLAB
applies for choosing a default variable see “Finding a Default Symbolic
Variable” on page 2-25.

Systems of Algebraic Equations
You also can solve systems of equations. For example:

syms x y z;
[x, y, z] = solve('z = 4*x', 'x = y', 'z = x^2 + y^2')

x =
0
2

y =
0
2

z =
0
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Finding a Default Symbolic Variable
When performing substitution, differentiation, or integration, if you do not
specify a variable to use, MATLAB uses a default variable. The default
variable is basically the one closest alphabetically to x. To find which variable
is chosen as a default variable, use the symvar(expression, 1) command.
For example:

syms s t;
g = s + t;
symvar(g, 1)

ans =
t

syms sx tx;
g = sx + tx;
symvar(g, 1)

ans =
tx

For more information on choosing the default symbolic variable, see the
symvar command.

Creating Plots of Symbolic Functions
You can create different types of graphs including:

• Plots of explicit functions

• Plots of implicit functions

• 3-D parametric plots

• Surface plots

See “Pedagogical and Graphical Applications” on page 5-6 for in-depth
coverage of Symbolic Math Toolbox graphics and visualization tools.
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Explicit Function Plot
The simplest way to create a plot is to use the ezplot command:

syms x;
ezplot(x^3 - 6*x^2 + 11*x - 6);
hold on;

The hold on command retains the existing plot allowing you to add new
elements and change the appearance of the plot. For example, now you can
change the names of the axes and add a new title and grid lines. When you
finish working with the current plot, enter the hold off command:

xlabel('x axis');
ylabel('no name axis');
title('Explicit function: x^3 - 6*x^2 + 11*x - 6');
grid on;
hold off
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Implicit Function Plot
You can plot implicitly defined functions. For example, create a plot for the
following implicit function over the domain –1 < x < 1:

syms x y;
f = (x^2 + y^2)^4 - (x^2 - y^2)^2;
ezplot(f, [-1 1]);
hold on;
xlabel('x axis');
ylabel('y axis');
title('Implicit function: f = (x^2 + y^2)^4 - (x^2 - y^2)^2');
grid on;
hold off
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3-D Plot
3-D graphics is also available in Symbolic Math Toolbox . To create a 3-D plot,
use the ezplot3 command. For example:

syms t;
ezplot3(t^2*sin(10*t), t^2*cos(10*t), t);
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Surface Plot
If you want to create a surface plot, use the ezsurf command. For example, to
plot a paraboloid z = x2 + y2, enter:

syms x y;
ezsurf(x^2 + y^2);
hold on;
zlabel('z');
title('z = x^2 + y^2');
hold off
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Assumptions for Symbolic Objects

In this section...

“Default Assumption” on page 2-30

“Setting Assumptions for Symbolic Variables” on page 2-30

“Deleting Symbolic Objects and Their Assumptions” on page 2-31

Default Assumption
In Symbolic Math Toolbox, symbolic variables are single complex variables by
default. For example, if you declare z as a symbolic variable:

syms z

MATLAB assumes z is a complex variable. You can always check if a symbolic
variable is assumed to be complex or real by entering conj command. If
conj(x) == x returns 1, x is a real variable:

z == conj(z)

ans =
0

Setting Assumptions for Symbolic Variables
The sym and syms commands allow you to set up assumptions for symbolic
variables. For example, create the real symbolic variables x and y and the
positive symbolic variable z:

x = sym('x', 'real');
y = sym('y', 'real');
z = sym('z', 'positive');

or more efficiently

syms x y real;
syms z positive;

There are two assumptions you can assign to a symbolic object within the sym
command: real and positive. Together with the default complex property of a
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symbolic variable, it gives you three choices for an assumption for a symbolic
variable: complex, real, and positive.

Deleting Symbolic Objects and Their Assumptions
When you declare x to be real with the command

syms x real

you create a symbolic object x and the assumption that the object is real.
Symbolic objects and their assumptions are stored separately. When you
delete a symbolic object from the MATLAB workspace

clear x

the assumption that x is real stays in symbolic engine. If you declare a new
symbolic variable x later, it inherits the assumption that x is real instead of
getting a default assumption. If later you solve an equation and simplify an
expression with the symbolic variable x, you could get incomplete results. For
example, the assumption that x is real causes the polynomial x2+1 to have
no roots:

syms x real;
clear x;
syms x;
solve(x^2+1)

Warning: Explicit solution could not be found.
> In solve at 81

ans =
[ empty sym ]

The complex roots of this polynomial disappear because the symbolic variable
x still has the assumption that x is real stored in the symbolic engine. To
clear the assumption, enter

syms x clear

After you clear the assumption, the symbolic object stays in the MATLAB
workspace. If you want to remove both the symbolic object and its assumption,
use two subsequent commands:

2-31



2 Getting Started

1 To clear the assumption, enter

syms x clear

2 To delete the symbolic object, enter

clear x

For more information on clearing symbolic variables, see “Clearing
Assumptions and Resetting the Symbolic Engine” on page 4-29.
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Using Symbolic Math
Toolbox Software

This section explains how to use Symbolic Math Toolbox software to perform
many common mathematical operations. The section covers the following
topics:

• “Calculus” on page 3-2

• “Simplifications and Substitutions” on page 3-42

• “Variable-Precision Arithmetic” on page 3-60

• “Linear Algebra” on page 3-66

• “Solving Equations” on page 3-93

• “Integral Transforms and Z-Transforms” on page 3-102

• “Special Functions of Applied Mathematics” on page 3-120

• “Generating Code from Symbolic Expressions” on page 3-129
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Calculus

In this section...

“Differentiation” on page 3-2

“Limits” on page 3-8

“Integration” on page 3-12

“Symbolic Summation” on page 3-19

“Taylor Series” on page 3-20

“Calculus Example” on page 3-22

“Extended Calculus Example” on page 3-30

Differentiation
To illustrate how to take derivatives using Symbolic Math Toolbox software,
first create a symbolic expression:

syms x
f = sin(5*x)

The command

diff(f)

differentiates f with respect to x:

ans =
5*cos(5*x)

As another example, let

g = exp(x)*cos(x)

where exp(x) denotes ex, and differentiate g:

diff(g)
ans =
exp(x)*cos(x) - exp(x)*sin(x)
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To take the second derivative of g, enter

diff(g,2)
ans =
(-2)*exp(x)*sin(x)

You can get the same result by taking the derivative twice:

diff(diff(g))
ans =
(-2)*exp(x)*sin(x)

In this example, MATLAB software automatically simplifies the answer.
However, in some cases, MATLAB might not simply an answer, in which
case you can use the simplify command. For an example of this, see “More
Examples” on page 3-5.

Note that to take the derivative of a constant, you must first define the
constant as a symbolic expression. For example, entering

c = sym('5');
diff(c)

returns

ans =
0

If you just enter

diff(5)

MATLAB returns

ans =
[]

because 5 is not a symbolic expression.

Derivatives of Expressions with Several Variables
To differentiate an expression that contains more than one symbolic variable,
you must specify the variable that you want to differentiate with respect to.
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The diff command then calculates the partial derivative of the expression
with respect to that variable. For example, given the symbolic expression

syms s t
f = sin(s*t)

the command

diff(f,t)

calculates the partial derivative ∂ ∂f t/ . The result is

ans =
s*cos(s*t)

To differentiate f with respect to the variable s, enter

diff(f,s)

which returns:

ans =
t*cos(s*t)

If you do not specify a variable to differentiate with respect to, MATLAB
chooses a default variable. Basically, the default variable is the letter closest
to x in the alphabet. See the complete set of rules in “Finding a Default
Symbolic Variable” on page 2-25. In the preceding example, diff(f) takes
the derivative of f with respect to t because the letter t is closer to x in the
alphabet than the letter s is. To determine the default variable that MATLAB
differentiates with respect to, use the symvar command:

symvar(f, 1)

ans =
t

To calculate the second derivative of f with respect to t, enter

diff(f, t, 2)

which returns
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ans =
-s^2*sin(s*t)

Note that diff(f, 2) returns the same answer because t is the default
variable.

More Examples
To further illustrate the diff command, define a, b, x, n, t, and theta in
the MATLAB workspace by entering

syms a b x n t theta

The table below illustrates the results of entering diff(f).

f diff(f)

syms x n;
f = x^n;

diff(f)

ans =
n*x^(n - 1)

syms a b t;
f = sin(a*t + b);

diff(f)

ans =
a*cos(b + a*t)

syms theta;
f = exp(i*theta);

diff(f)

ans =
i*exp(i*theta)

To differentiate the Bessel function of the first kind,besselj(nu,z), with
respect to z, type

syms nu z
b = besselj(nu,z);
db = diff(b)
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which returns

db =
(nu*besselj(nu, z))/z - besselj(nu + 1, z)

The diff function can also take a symbolic matrix as its input. In this case,
the differentiation is done element-by-element. Consider the example

syms a x
A = [cos(a*x),sin(a*x);-sin(a*x),cos(a*x)]

which returns

A =
[ cos(a*x), sin(a*x)]
[ -sin(a*x), cos(a*x)]

The command

diff(A)

returns

ans =
[ -a*sin(a*x), a*cos(a*x)]
[ -a*cos(a*x), -a*sin(a*x)]

You can also perform differentiation of a vector function with respect to a
vector argument. Consider the transformation from Euclidean (x, y, z) to

spherical ( , , )r   coordinates as given by x r= cos cos  , y r= cos sin  ,

and z r= sin . Note that  corresponds to elevation or latitude while 
denotes azimuth or longitude.
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To calculate the Jacobian matrix, J, of this transformation, use the jacobian
function. The mathematical notation for J is

J
x y z
r

= ∂
∂ ( )

( , , )
, ,

.
 

For the purposes of toolbox syntax, use l for  and f for  . The commands

syms r l f
x = r*cos(l)*cos(f); y = r*cos(l)*sin(f); z = r*sin(l);
J = jacobian([x; y; z], [r l f])

return the Jacobian

J =
[ cos(f)*cos(l), -r*cos(f)*sin(l), -r*cos(l)*sin(f)]
[ cos(l)*sin(f), -r*sin(f)*sin(l), r*cos(f)*cos(l)]
[ sin(l), r*cos(l), 0]

and the command

detJ = simple(det(J))

returns

detJ =
-r^2*cos(l)
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The arguments of the jacobian function can be column or row vectors.
Moreover, since the determinant of the Jacobian is a rather complicated
trigonometric expression, you can use the simple command to make
trigonometric substitutions and reductions (simplifications). The section
“Simplifications and Substitutions” on page 3-42 discusses simplification in
more detail.

A table summarizing diff and jacobian follows.

Mathematical
Operator MATLAB Command

df
dx

diff(f) or diff(f, x)

df
da

diff(f, a)

d f

db

2

2

diff(f, b, 2)

J
r t
u v

= ∂
∂

( , )
( , )

J = jacobian([r; t],[u; v])

Limits
The fundamental idea in calculus is to make calculations on functions as
a variable “gets close to” or approaches a certain value. Recall that the
definition of the derivative is given by a limit

f x
f x h f x

hh
’( ) lim

( ) ( )
,= + −

→0

provided this limit exists. Symbolic Math Toolbox software enables you to
calculate the limits of functions directly. The commands

syms h n x
limit((cos(x+h) - cos(x))/h, h, 0)
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which return

ans =
-sin(x)

and

limit((1 + x/n)^n, n, inf)

which returns

ans =
exp(x)

illustrate two of the most important limits in mathematics: the derivative (in
this case of cos(x)) and the exponential function.

One-Sided Limits
You can also calculate one-sided limits with Symbolic Math Toolbox software.
For example, you can calculate the limit of x/|x|, whose graph is shown in the
following figure, as x approaches 0 from the left or from the right.
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−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

x/abs(x)

To calculate the limit as x approaches 0 from the left,

lim ,
x

x
x→ −0

enter

syms x;
limit(x/abs(x), x, 0, 'left')

This returns

ans =
-1

To calculate the limit as x approaches 0 from the right,

lim ,
x

x
x→ +
=

0
1
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enter

syms x;
limit(x/abs(x), x, 0, 'right')

This returns

ans =
1

Since the limit from the left does not equal the limit from the right, the two-
sided limit does not exist. In the case of undefined limits, MATLAB returns
NaN (not a number). For example,

syms x;
limit(x/abs(x), x, 0)

returns

ans =
NaN

Observe that the default case, limit(f) is the same as limit(f,x,0).
Explore the options for the limit command in this table, where f is a function
of the symbolic object x.

Mathematical
Operation MATLAB Command

lim ( )
x

f x
→0

limit(f)

lim ( )
x a

f x
→

limit(f, x, a) or

limit(f, a)

lim ( )
x a

f x
→ −

limit(f, x, a, 'left')

lim ( )
x a

f x
→ +

limit(f, x, a, 'right')
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Integration
If f is a symbolic expression, then

int(f)

attempts to find another symbolic expression, F, so that diff(F) = f. That
is, int(f) returns the indefinite integral or antiderivative of f (provided one
exists in closed form). Similar to differentiation,

int(f,v)

uses the symbolic object v as the variable of integration, rather than the
variable determined by symvar. See how int works by looking at this table.

Mathematical Operation MATLAB Command

x dx
x n

x
n

n n∫ =
= −

+

⎧
⎨
⎪

⎩⎪
+

log( ) if 

otherwise.

1

1

1

int(x^n) or int(x^n,x)

sin( )
/

2 1
0

2

x dx =∫
 int(sin(2*x), 0, pi/2) or

int(sin(2*x), x, 0, pi/2)

g = cos(at + b)

g t dt at b a( ) sin( ) /= +∫
g = cos(a*t + b) int(g) or int(g, t)

J z dz J z1 0( ) ( )= −∫ int(besselj(1, z)) or int(besselj(1,
z), z)

In contrast to differentiation, symbolic integration is a more complicated task.
A number of difficulties can arise in computing the integral:

• The antiderivative, F, may not exist in closed form.

• The antiderivative may define an unfamiliar function.

• The antiderivative may exist, but the software can’t find it.
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• The software could find the antiderivative on a larger computer, but runs
out of time or memory on the available machine.

Nevertheless, in many cases, MATLAB can perform symbolic integration
successfully. For example, create the symbolic variables

syms a b theta x y n u z

The following table illustrates integration of expressions containing those
variables.

f int(f)

syms x n;
f = x^n;

int(f)

ans =
piecewise([n = -1, log(x)], [n <> -1,
x^(n + 1)/(n + 1)])

syms y;
f = y^(-1);

int(f)

ans =
log(y)

syms x n;
f = n^x;

int(f)

ans =
n^x/log(n)

syms a b
theta;
f =
sin(a*theta+b);

int(f)

ans =
-cos(b + a*theta)/a
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f int(f)

syms u;
f = 1/(1+u^2);

int(f)

ans =
atan(u)

syms x;
f = exp(-x^2);

int(f)

ans =
(pi^(1/2)*erf(x))/2

In the last example, exp(-x^2), there is no formula for the integral involving
standard calculus expressions, such as trigonometric and exponential
functions. In this case, MATLAB returns an answer in terms of the error
function erf.

If MATLAB is unable to find an answer to the integral of a function f, it
just returns int(f).

Definite integration is also possible.

Definite Integral Command

f x dx
a

b
( )∫

int(f, a, b)

f v dv
a

b
( )∫

int(f, v, a, b)

Here are some additional examples.
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f a, b int(f, a, b)

syms x;
f = x^7;

a =
0;
b =
1;

int(f, a, b)

ans =
1/8

syms x;
f = 1/x;

a =
1;
b =
2;

int(f, a, b)

ans =
log(2)

syms x;
f =
log(x)*sqrt(x);

a =
0;
b =
1;

int(f, a, b)

ans =
-4/9

syms x;
f =
exp(-x^2);

a =
0;
b =
inf;

int(f, a, b)

ans =
pi^(1/2)/2

syms z;
f =
besselj(1,z)^2;

a =
0;
b =
1;

int(f, a, b)

ans =
hypergeom([3/2, 3/2], [2,
5/2, 3], -1)/12

For the Bessel function (besselj) example, it is possible to compute a
numerical approximation to the value of the integral, using the double
function. The commands

syms z
a = int(besselj(1,z)^2,0,1)

return
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a =
hypergeom([3/2, 3/2], [2, 5/2, 3], -1)/12

and the command

a = double(a)

returns

a =
0.0717

Integration with Real Parameters
One of the subtleties involved in symbolic integration is the “value” of various
parameters. For example, if a is any positive real number, the expression

e ax− 2

is the positive, bell shaped curve that tends to 0 as x tends to ±∞. You can
create an example of this curve, for a = 1/2, using the following commands:

syms x
a = sym(1/2);
f = exp(-a*x^2);
ezplot(f)

3-16



Calculus

However, if you try to calculate the integral

e dxax−

−∞

∞

∫
2

without assigning a value to a, MATLAB assumes that a represents a complex
number, and therefore returns a piecewise answer that depends on the
argument of a. If you are only interested in the case when a is a positive real
number, you can calculate the integral as follows:

syms a positive;

The argument positive in the syms command restricts a to have positive
values. Now you can calculate the preceding integral using the commands

syms x;
f = exp(-a*x^2);
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int(f, x, -inf, inf)

This returns

ans =
pi^(1/2)/a^(1/2)

Integration with Complex Parameters
To calculate the integral

1
2 2a x

dx
+−∞

∞

∫

for complex values of a, enter

syms a x clear
f = 1/(a^2 + x^2);
F = int(f, x, -inf, inf)

syms is used with the clear option to clear the real property that was
assigned to a in the preceding example — see “Deleting Symbolic Objects
and Their Assumptions” on page 2-31.

The preceding commands produce the complex output

F =
(pi*signIm(i/a))/a

The function signIm is defined as:

signIm
if  or  and 
if  

-1 otherwi
( )

Im( ) , Im( )
z

z z z
z=

> = <
=

1 0 0 0
0 0

sse.

⎧
⎨
⎪

⎩⎪
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To evaluate F at a = 1 + i, enter

g = subs(F, 1 + i)

g =
pi/(2*i)^(1/2)

double(g)

ans =
1.5708 - 1.5708i

Symbolic Summation
You can compute symbolic summations, when they exist, by using the symsum
command. For example, the p-series

1
1

2

1

32 2
+ + + ...

sums to  2 6/ , while the geometric series

1 + x + x2 + ...

sums to 1/(1 – x), provided x < 1 . These summations are demonstrated below:

syms x k
s1 = symsum(1/k^2, 1, inf)
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s2 = symsum(x^k, k, 0, inf)

s1 =
pi^2/6

s2 =
piecewise([1 <= x, Inf], [abs(x) < 1, -1/(x - 1)])

Taylor Series
The statements

syms x
f = 1/(5 + 4*cos(x));
T = taylor(f, 8)

return

T =
(49*x^6)/131220 + (5*x^4)/1458 + (2*x^2)/81 + 1/9

which is all the terms up to, but not including, order eight in the Taylor series
for f(x):

( )
( )
!

.
( )

x a
f a

n
n

n

n

−
=

∞

∑
0

Technically, T is a Maclaurin series, since its base point is a = 0.

The command

pretty(T)

prints T in a format resembling typeset mathematics:
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6 4 2
49 x 5 x 2 x 1
------ + ---- + ---- + -
131220 1458 81 9

These commands

syms x
g = exp(x*sin(x))
t = taylor(g, 12, 2);

generate the first 12 nonzero terms of the Taylor series for g about x = 2.

t is a large expression; enter

size(char(t))

ans =
1 109959

to find that t has more than 100,000 characters in its printed form. In order
to proceed with using t, first simplify its presentation:

t = simplify(t);
size(char(t))

ans =
1 11585

To simplify t even further, use the simple function:

t = simple(t);
size(char(t))

ans =
1 6988

Next, plot these functions together to see how well this Taylor approximation
compares to the actual function g:
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xd = 1:0.05:3; yd = subs(g,x,xd);
ezplot(t, [1, 3]); hold on;
plot(xd, yd, 'r-.')
title('Taylor approximation vs. actual function');
legend('Taylor','Function')

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1

2

3

4

5

6

x

Taylor approximation vs. actual function

Taylor
Function

Special thanks to Professor Gunnar Bäckstrøm of UMEA in Sweden for this
example.

Calculus Example
This section describes how to analyze a simple function to find its asymptotes,
maximum, minimum, and inflection point. The section covers the following
topics:
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• “Defining the Function” on page 3-23

• “Finding the Asymptotes” on page 3-24

• “Finding the Maximum and Minimum” on page 3-26

• “Finding the Inflection Point” on page 3-28

Defining the Function
The function in this example is

f x
x x

x x
( ) .= + −

+ −
3 6 1

3

2

2

To create the function, enter the following commands:

syms x
num = 3*x^2 + 6*x -1;
denom = x^2 + x - 3;
f = num/denom

This returns

f =
(3*x^2 + 6*x - 1)/(x^2 + x - 3)

You can plot the graph of f by entering

ezplot(f)

This displays the following plot.
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−6 −4 −2 0 2 4 6
−4

−2

0

2

4

6

8

x

(3 x2+6 x−1)/(x2+x−3)

Finding the Asymptotes
To find the horizontal asymptote of the graph of f, take the limit of f as x
approaches positive infinity:

limit(f, inf)
ans =
3

The limit as x approaches negative infinity is also 3. This tells you that the
line y = 3 is a horizontal asymptote to the graph.

To find the vertical asymptotes of f, set the denominator equal to 0 and solve
by entering the following command:

roots = solve(denom)

This returns to solutions to x x2 3 0+ − = :

roots =
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13^(1/2)/2 - 1/2
- 13^(1/2)/2 - 1/2

This tells you that vertical asymptotes are the lines

x = − +1 13
2

,

and

x = − −1 13
2

.

You can plot the horizontal and vertical asymptotes with the following
commands:

ezplot(f)
hold on % Keep the graph of f in the figure
% Plot horizontal asymptote
plot([-2*pi 2*pi], [3 3],'g')
% Plot vertical asymptotes
plot(double(roots(1))*[1 1], [-5 10],'r')
plot(double(roots(2))*[1 1], [-5 10],'r')
title('Horizontal and Vertical Asymptotes')
hold off

Note that roots must be converted to double to use the plot command.

The preceding commands display the following figure.
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−6 −4 −2 0 2 4 6
−4

−2

0

2

4

6

8

x

Horizontal and Vertical Asymptotes

To recover the graph of f without the asymptotes, enter

ezplot(f)

Finding the Maximum and Minimum
You can see from the graph that f has a local maximum somewhere between
the points x = –2 and x = 0, and might have a local minimum between x =
–6 and x = –2. To find the x-coordinates of the maximum and minimum,
first take the derivative of f:

f1 = diff(f)

This returns

f1 =

(6*x + 6)/(x^2 + x - 3) - ((2*x + 1)*(3*x^2 + 6*x - 1))/(x^2 + x - 3)^2

To simplify this expression, enter

f1 = simplify(f1)
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which returns

f1 =
-(3*x^2 + 16*x + 17)/(x^2 + x - 3)^2

You can display f1 in a more readable form by entering

pretty(f1)

which returns

2
3 x + 16 x + 17

- ----------------
2 2

(x + x - 3)

Next, set the derivative equal to 0 and solve for the critical points:

crit_pts = solve(f1)

This returns

crit_pts =

13^(1/2)/3 - 8/3
- 13^(1/2)/3 - 8/3

It is clear from the graph of f that it has a local minimum at

x1
8 13

3
= − −

,

and a local maximum at

x2
8 13

3
= − +

.
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Note MATLAB does not always return the roots to an equation in the same
order.

You can plot the maximum and minimum of f with the following commands:

ezplot(f)
hold on
plot(double(crit_pts), double(subs(f,crit_pts)),'ro')
title('Maximum and Minimum of f')
text(-5.5,3.2,'Local minimum')
text(-2.5,2,'Local maximum')
hold off

This displays the following figure.

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

6

8

x

Maximum and Minimum of f

Local minimum

Local maximum

Finding the Inflection Point
To find the inflection point of f, set the second derivative equal to 0 and solve.
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f2 = diff(f1);
inflec_pt = solve(f2);
double(inflec_pt)

This returns

ans =
-5.2635
-1.3682 - 0.8511i
-1.3682 + 0.8511i

In this example, only the first entry is a real number, so this is the only
inflection point. (Note that in other examples, the real solutions might not
be the first entries of the answer.) Since you are only interested in the real
solutions, you can discard the last two entries, which are complex numbers.

inflec_pt = inflec_pt(1)

To see the symbolic expression for the inflection point, enter

pretty(simplify(inflec_pt))

This returns

/ 1/2 \1/3
13 | 2197 | 8

- -------------------- - | 169/54 - ------- | - -
1 \ 18 / 3
-

/ 1/2 \3
| 169 2197 |

9 | --- - ------- |
\ 54 18 /

To plot the inflection point, enter

ezplot(f, [-9 6])
hold on
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plot(double(inflec_pt), double(subs(f,inflec_pt)),'ro')
title('Inflection Point of f')
text(-7,2,'Inflection point')
hold off

The extra argument, [-9 6], in ezplot extends the range of x values in
the plot so that you see the inflection point more clearly, as shown in the
following figure.

−8 −6 −4 −2 0 2 4 6

−2

0

2

4

6

8

x

Inflection Point of f

Inflection point

Extended Calculus Example
This section presents an extended example that illustrates how to find the
maxima and minima of a function. The section covers the following topics:

• “Defining the Function” on page 3-31

• “Finding the Zeros of f3” on page 3-32

• “Finding the Maxima and Minima of f2” on page 3-36

• “Integrating” on page 3-37
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Defining the Function
The starting point for the example is the function

f x
x

( )
cos( )

.=
+

1
5 4

You can create the function with the commands

syms x
f = 1/(5+4*cos(x))

which return

f =
1/(4*cos(x) + 5)

The example shows how to find the maximum and minimum of the second
derivative of f(x). To compute the second derivative, enter

f2 = diff(f, 2)

which returns

f2 =
(4*cos(x))/(4*cos(x) + 5)^2 + (32*sin(x)^2)/(4*cos(x) + 5)^3

Equivalently, you can type f2 = diff(f, x, 2). The default scaling in
ezplot cuts off part of the graph of f2. You can set the axes limits manually
to see the entire function:

ezplot(f2)
axis([-2*pi 2*pi -5 2])
title('Graph of f2')
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−6 −4 −2 0 2 4 6
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Graph of f2

From the graph, it appears that the maximum value of ′′f x( ) is 1 and the
minimum value is -4. As you will see, this is not quite true. To find the exact
values of the maximum and minimum, you only need to find the maximum

and minimum on the interval (–π, π]. This is true because ′′f x( ) is periodic
with period 2π, so that the maxima and minima are simply repeated in each
translation of this interval by an integer multiple of 2π. The next two sections
explain how to do find the maxima and minima.

Finding the Zeros of f3

The maxima and minima of ′′f x( ) occur at the zeros of ′′′f x( ) . The statements

f3 = diff(f2);
pretty(f3)

compute ′′′f x( ) and display it in a more readable form:
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3
384 sin(x) 4 sin(x) 96 cos(x) sin(x)

--------------- - --------------- + ----------------
4 2 3

(4 cos(x) + 5) (4 cos(x) + 5) (4 cos(x) + 5)

You can simplify this expression using the statements

f3 = simple(f3);
pretty(f3)

2
4 sin(x) (- 16 cos(x) + 80 cos(x) + 71)
----------------------------------------

4
(4 cos(x) + 5)

Now, to find the zeros of ′′′f x( ) , enter

zeros = solve(f3)

This returns a 5-by-1 symbolic matrix

zeros =
acos(5/2 - (3*19^(1/2))/4)
acos((3*19^(1/2))/4 + 5/2)

0
-acos(5/2 - 3/4*19^(1/2))
-acos(3/4*19^(1/2) + 5/2)

each of whose entries is a zero of ′′′f x( ) . The commands

format;
% Default format of 5 digits
zerosd = double(zeros)

convert the zeros to double form:
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zerosd =
2.4483

0 + 2.4381i
0

-2.4483
0 - 2.4381i

So far, you have found three real zeros and two complex zeros. However, as
the following graph of f3 shows, these are not all its zeros:

ezplot(f3)
hold on;
plot(zerosd,0*zerosd,'ro') % Plot zeros
plot([-2*pi,2*pi], [0,0],'g-.'); % Plot x-axis
title('Graph of f3')
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Graph of f3

The red circles in the graph correspond to zerosd(1), zerosd(3), and
zerosd(4). As you can see in the graph, there are also zeros at ±π. The

additional zeros occur because ′′′f x( ) contains a factor of sin(x), which is
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zero at integer multiples of π. The function, solve(sin(x)), however, only
finds the zero at x = 0.

A complete list of the zeros of ′′′f x( ) in the interval (–π, π] is

zerosd = [zerosd(1) zerosd(3) zerosd(4) pi];

You can display these zeros on the graph of ′′′f x( ) with the following
commands:

ezplot(f3)
hold on;
plot(zerosd,0*zerosd,'ro')
plot([-2*pi,2*pi], [0,0],'g-.'); % Plot x-axis
title('Zeros of f3')
hold off;
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Zeros of f3
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Finding the Maxima and Minima of f2

To find the maxima and minima of ′′f x( ) , calculate the value of ′′f x( ) at

each of the zeros of ′′′f x( ) . To do so, substitute zeros into f2 and display
the result below zeros:

[zerosd; subs(f2,zerosd)]

ans =
2.4483 0 -2.4483 3.1416
1.0051 0.0494 1.0051 -4.0000

This shows the following:

• ′′f x( ) has an absolute maximum at x = ±2.4483, whose value is 1.0051.

• ′′f x( ) has an absolute minimum at x = π, whose value is -4.

• ′′f x( ) has a local minimum at x = 0, whose value is 0.0494.

You can display the maxima and minima with the following commands:

clf
ezplot(f2)
axis([-2*pi 2*pi -4.5 1.5])
ylabel('f2');
title('Maxima and Minima of f2')
hold on
plot(zerosd, subs(f2,zerosd), 'ro')
text(-4, 1.25, 'Absolute maximum')
text(-1,-0.25,'Local minimum')
text(.9, 1.25, 'Absolute maximum')
text(1.6, -4.25, 'Absolute minimum')
hold off;

This displays the following figure.
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The preceding analysis shows that the actual range of ′′f x( ) is [–4, 1.0051].

Integrating
Integrate f(x):

F = int(f)

The result

F =
(2*atan(tan(x/2)/3))/3

involves the arctangent function.

Note that F(x) is not an antiderivative of f(x) for all real numbers, since it is
discontinuous at odd multiples of π, where tan (x) is singular. You can see the
gaps in F(x) in the following figure.

ezplot(F)
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To change F(x) into a true antiderivative of f(x) that is differentiable
everywhere, you can add a step function to F(x). The height of the steps is
the height of the gaps in the graph of F(x). You can determine the height of
the gaps by taking the limits of F(x) as x approaches π from the left and from
the right. The limit from the left is

limit(F, x, pi, 'left')

ans =
pi/3

On the other hand, the limit from the right is

limit(F, x, pi, 'right')

ans =
-pi/3

The height of the gap is the distance between the left-and right-hand limits,
which is 2π/3 as shown in the following figure.
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You can create the step function using the round function, which rounds
numbers to the nearest integer, as follows:

J = sym(2*pi/3)*sym('round(x/(2*pi))');

Each step has width 2π, and the jump from one step to the next is 2π/3, as
shown in the following figure, generated with

ezplot(J, [-2*pi 2*pi])
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Next, add the step function J(x) to F(x) with the following code:

F1 = F + J

F1 =
(2*atan(tan(x/2)/3))/3 + (2*pi*round(x/(2*pi)))/3

Adding the step function raises the section of the graph of F(x) on the interval
[π, 3π) up by 2π/3, lowers the section on the interval (–3π, –π] down by 2π/3,
and so on, as shown in the following figure.
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When you plot the result by entering

ezplot(F1)

you see that this representation does have a continuous graph.
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Simplifications and Substitutions

In this section...

“Simplifications” on page 3-42

“Substitutions” on page 3-53

Simplifications
Here are three different symbolic expressions.

syms x
f = x^3 - 6*x^2 + 11*x - 6;
g = (x - 1)*(x - 2)*(x - 3);
h = -6 + (11 + (-6 + x)*x)*x;

Here are their prettyprinted forms, generated by

pretty(f);
pretty(g);
pretty(h)

3 2
x - 6 x + 11 x - 6

(x - 1) (x - 2) (x - 3)

x (x (x - 6) + 11) - 6

These expressions are three different representations of the same
mathematical function, a cubic polynomial in x.

Each of the three forms is preferable to the others in different situations. The
first form, f, is the most commonly used representation of a polynomial. It
is simply a linear combination of the powers of x. The second form, g, is the
factored form. It displays the roots of the polynomial and is the most accurate
for numerical evaluation near the roots. But, if a polynomial does not have
such simple roots, its factored form may not be so convenient. The third form,
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h, is the Horner, or nested, representation. For numerical evaluation, it
involves the fewest arithmetic operations and is the most accurate for some
other ranges of x.

The symbolic simplification problem involves the verification that these three
expressions represent the same function. It also involves a less clearly defined
objective — which of these representations is “the simplest”?

This toolbox provides several functions that apply various algebraic and
trigonometric identities to transform one representation of a function into
another, possibly simpler, representation. These functions are collect,
expand, horner, factor, simplify, and simple.

collect
The statementcollect(f) views f as a polynomial in its symbolic variable,
say x, and collects all the coefficients with the same power of x. A second
argument can specify the variable in which to collect terms if there is more
than one candidate. Here are a few examples.

f collect(f)

syms x;
f =
(x-1)*(x-2)*(x-3);

collect(f)

ans =
x^3 - 6*x^2 + 11*x - 6

syms x;
f = x*(x*(x - 6) +
11) - 6;

collect(f)

ans =
x^3 - 6*x^2 + 11*x - 6

syms x t;
f = (1+x)*t + x*t;

collect(f)

ans =
(2*t)*x + t

3-43



3 Using Symbolic Math Toolbox™ Software

expand
The statement expand(f) distributes products over sums and applies other
identities involving functions of sums as shown in the examples below.

f expand(f)

syms a x y;
f = a*(x + y);

expand(f)

ans =
a*x + a*y

syms x;
f = (x - 1)*(x
- 2)*(x - 3);

expand(f)

ans =
x^3 - 6*x^2 + 11*x - 6

syms x;
f = x*(x*(x -
6) + 11) - 6;

expand(f)

ans =
x^3 - 6*x^2 + 11*x - 6

syms a b;
f = exp(a + b);

expand(f)

ans =
exp(a)*exp(b)

syms x y;
f = cos(x + y);

expand(f)

ans =
cos(x)*cos(y) - sin(x)*sin(y)
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f expand(f)

syms x;
f =
cos(3*acos(x));

expand(f)

ans =
3*x*(x^2 - 1) + x^3

syms x;
f = 3*x*(x^2 -
1) + x^3;

expand(f)

ans =
4*x^3 - 3*x

horner
The statement horner(f) transforms a symbolic polynomial f into its Horner,
or nested, representation as shown in the following examples.

f horner(f)

syms x;
f = x^3 - 6*x^2
+ 11*x - 6;

horner(f)

ans =
x*(x*(x - 6) + 11) - 6

syms x;
f = 1.1 + 2.2*x
+ 3.3*x^2;

horner(f)

ans =
x*((33*x)/10 + 11/5) + 11/10

factor
If f is a polynomial with rational coefficients, the statement

factor(f)

expresses f as a product of polynomials of lower degree with rational
coefficients. If f cannot be factored over the rational numbers, the result is
f itself. Here are several examples.
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f factor(f)

syms x;
f = x^3 - 6*x^2
+ 11*x - 6;

factor(f)

ans =
(x - 3)*(x - 1)*(x - 2)

syms x;
f = x^3 - 6*x^2
+ 11*x - 5;

factor(f)

ans =
x^3 - 6*x^2 + 11*x - 5

syms x;
f = x^6 + 1;

factor(f)

ans =
(x^2 + 1)*(x^4 - x^2 + 1)

Here is another example involving factor. It factors polynomials of the form
x^n + 1. This code

syms x;
n = (1:9)';
p = x.^n + 1;
f = factor(p);
[p, f]

returns a matrix with the polynomials in its first column and their factored
forms in its second.

ans =
[ x + 1, x + 1]
[ x^2 + 1, x^2 + 1]
[ x^3 + 1, (x + 1)*(x^2 - x + 1)]
[ x^4 + 1, x^4 + 1]
[ x^5 + 1, (x + 1)*(x^4 - x^3 + x^2 - x + 1)]
[ x^6 + 1, (x^2 + 1)*(x^4 - x^2 + 1)]
[ x^7 + 1, (x + 1)*(x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)]
[ x^8 + 1, x^8 + 1]
[ x^9 + 1, (x + 1)*(x^2 - x + 1)*(x^6 - x^3 + 1)]
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As an aside at this point, factor can also factor symbolic objects containing
integers. This is an alternative to using the factor function in the MATLAB
specfun directory. For example, the following code segment

N = sym(1);
for k = 2:11

N(k) = 10*N(k-1)+1;
end
[N' factor(N')]

displays the factors of symbolic integers consisting of 1s:

ans =
[ 1, 1]
[ 11, 11]
[ 111, 3*37]
[ 1111, 11*101]
[ 11111, 41*271]
[ 111111, 3*7*11*13*37]
[ 1111111, 239*4649]
[ 11111111, 11*73*101*137]
[ 111111111, 3^2*37*333667]
[ 1111111111, 11*41*271*9091]
[ 11111111111, 21649*513239]

simplify
The simplify function is a powerful, general purpose tool that applies a
number of algebraic identities involving sums, integral powers, square roots
and other fractional powers, as well as a number of functional identities
involving trig functions, exponential and log functions, Bessel functions,
hypergeometric functions, and the gamma function. Here are some examples.

f simplify(f)

syms x;
f = x*(x*(x - 6) +
11) - 6;

simplify(f)

ans =
(x - 1)*(x - 2)*(x - 3)
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f simplify(f)

syms x;
f = (1 - x^2)/(1 - x);

simplify(f)

ans =
x + 1

syms a;
f = (1/a^3 + 6/a^2 +
12/a + 8)^(1/3);

simplify(f)

ans =
((2*a + 1)^3/a^3)^(1/3)

syms x y;
f = exp(x) * exp(y);

simplify(f)

ans =
exp(x + y)

syms x;
f = besselj(2, x) +
besselj(0, x);

simplify(f)

ans =
(2*besselj(1, x))/x

syms x;
f = gamma(x + 1) -
x*gamma(x);

simplify(f)

ans =
0

syms x;
f = cos(x)^2 + sin(x)^2;

simplify(f)

ans =
1

You can also use the syntax simplify(f, n) where n is a positive integer
that controls how many steps simplify takes. The default, when you don’t
provide an argument n, is 100 steps. For example,

z = diff(x/cos(x), 3)
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z =
3/cos(x) + (6*sin(x)^2)/cos(x)^3 +...
(6*x*sin(x)^3)/cos(x)^4 + (5*x*sin(x))/cos(x)^2

simplify(z)

ans =
(- 3*cos(x)^3 - x*sin(x)*cos(x)^2 + 6*cos(x) +
6*x*sin(x))/cos(x)^4

simplify(z, 200)

ans =
(6*cos(x) - 3*cos(x)^3 + sin(x)*(6*x-x*cos(x)^2))/cos(x)^4

simple
The simple function has the unorthodox mathematical goal of finding a
simplification of an expression that has the fewest number of characters.
Of course, there is little mathematical justification for claiming that one
expression is “simpler” than another just because its ASCII representation is
shorter, but this often proves satisfactory in practice.

The simple function achieves its goal by independently applying simplify,
collect, factor, and other simplification functions to an expression and
keeping track of the lengths of the results. The simple function then returns
the shortest result.

The simple function has several forms, each returning different output. The
form simple(f) displays each trial simplification and the simplification
function that produced it in the MATLAB command window. The simple
function then returns the shortest result. For example, the command

syms x;
simple(cos(x)^2 + sin(x)^2)

displays the following alternative simplifications in the MATLAB command
window along with the result:

simplify:

1
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radsimp:

cos(x)^2 + sin(x)^2

simplify(100):

1

combine(sincos):

1

combine(sinhcosh):

cos(x)^2 + sin(x)^2

combine(ln):

cos(x)^2 + sin(x)^2

factor:

cos(x)^2 + sin(x)^2

expand:

cos(x)^2 + sin(x)^2

combine:

cos(x)^2 + sin(x)^2

rewrite(exp):

((i*exp(i*x))/2 - i/(2*exp(i*x)))^2 + (exp(i*x)/2 + 1/(2*exp(i*x)))^2

rewrite(sincos):

cos(x)^2 + sin(x)^2

rewrite(sinhcosh):

cosh(-i*x)^2 - sinh(-i*x)^2

rewrite(tan):

(tan(x/2)^2 - 1)^2/(tan(x/2)^2 + 1)^2 + (4*tan(x/2)^2)/(tan(x/2)^2 + 1)^2

mwcos2sin:

1
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collect(x):

cos(x)^2 + sin(x)^2

ans =

1

This form is useful when you want to check, for example, whether the shortest
form is indeed the simplest. If you are not interested in how simple achieves
its result, use the form f = simple(f). This form simply returns the shortest
expression found. For example, the statement

f = simple(cos(x)^2 + sin(x)^2)

returns

f =
1

If you want to know which simplification returned the shortest result, use the
multiple output form [f, how] = simple(f). This form returns the shortest
result in the first variable and the simplification method used to achieve the
result in the second variable. For example, the statement

[f, how] = simple(cos(x)^2 + sin(x)^2)

returns

f =
1

how =
simplify

The simple function sometimes improves on the result returned by simplify,
one of the simplifications that it tries. For example, when applied to the
examples given for simplify, simple returns a simpler (or at least shorter)
result as shown:
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f simplify(f) simple(f)

syms a positive;
f = (1/a^3 + 6/a^2 +
12/a + 8)^(1/3);

simplify(f)

ans =
((2*a +
1)^3/a^3)^(1/3)

g =
simple(f)

g =
1/a + 2

syms x;
f = cos(x) + i*sin(x);

simplify(f)

ans =
cos(x) + i*sin(x)

g =
simple(f)

g =
exp(i*x)

In some cases, it is advantageous to apply simple twice to obtain the effect of
two different simplification functions. For example:

z = diff(x/cos(x),3)

z =

3/cos(x) + (6*sin(x)^2)/cos(x)^3 + (6*x*sin(x)^3)/cos(x)^4 + (5*x*sin(x))/cos(x)^2

z1 = simple(z)

z1 =
(6*cos(x) - 3*cos(x)^3 + sin(x)*(6*x -
x*cos(x)^2))/(sin(x)^2 - 1)^2

z2 = simple(simple(z))

z2 =
(6*cos(x) - 3*cos(x)^3 + sin(x)*(6*x - x*cos(x)^2))/cos(x)^4

The simple function is particularly effective on expressions involving
trigonometric functions:
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f simple(f)

syms x;
f = cos(x)^2 +
sin(x)^2;

f = simple(f)

f =
1

syms x;
f = 2*cos(x)^2 -
sin(x)^2;

f = simple(f)

f =
3*cos(x)^2 - 1

syms x;
f = cos(x)^2 -
sin(x)^2;

f = simple(f)

f =
cos(2*x)

syms x;
f = cos(x) +
i*sin(x);

f = simple(f)

f =
exp(i*x)

syms x;
f = cos(3*acos(x));

f = simple(f)

f =
4*x^3 - 3*x

Substitutions
There are two functions for symbolic substitution: subexpr and subs.

subexpr
These commands

syms a x
s = solve(x^3 + a*x + 1)
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solve the equation x^3 + a*x + 1 = 0 for the variable x:

s =

((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3) - a/(3*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3))

a/(6*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)) - ((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)/2...

- (3^(1/2)*i*(a/(3*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3))...

+ ((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)))/2

a/(6*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)) - ((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)/2...

+ (3^(1/2)*i*(a/(3*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3))...

+ ((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)))/2

This long expression has many repeated pieces, or subexpressions. The
subexpr function allows you to save these common subexpressions as
well as the symbolic object rewritten in terms of the subexpressions. The
subexpressions are saved in a column vector called sigma.

Continuing with the example

r = subexpr(s)

returns

sigma =

(a^3/27 + 1/4)^(1/2) - 1/2

r =

sigma^(1/3) - a/(3*sigma^(1/3))

a/(6*sigma^(1/3)) - sigma^(1/3)/2 - (3^(1/2)*i*(a/(3*sigma^(1/3)) + sigma^(1/3)))/2

a/(6*sigma^(1/3)) - sigma^(1/3)/2 + (3^(1/2)*i*(a/(3*sigma^(1/3)) + sigma^(1/3)))/2

Notice that subexpr creates the variable sigma in the MATLAB workspace.
You can verify this by typing whos, or the command

sigma

which returns

sigma =
(a^3/27 + 1/4)^(1/2) - 1/2
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subs
The following code finds the eigenvalues and eigenvectors of a circulant
matrix A:

syms a b c

A = [a b c; b c a; c a b];

[v,E] = eig(A)

v =

[ (a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)/(a - c) - (a - b)/(a - c),...

- (a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)/(a - c) - (a - b)/(a - c),...

1]

[ - (a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)/(a - c) - (b - c)/(a - c),...

(a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)/(a - c) - (b - c)/(a - c),...

1]

[ 1, 1, 1]

E =

[-(a^2-a*b-a*c+b^2-b*c+c^2)^(1/2), 0, 0]

[ 0, (a^2-a*b-a*c+b^2-b*c+c^2)^(1/2), 0]

[ 0, 0, a+b+c]

Note MATLAB might return the eigenvalues that appear on the diagonal of E
in a different order. In this case, the corresponding eigenvectors, which are
the columns of v, will also appear in a different order.

Suppose you want to replace the rather lengthy expression (a^2 - a*b -
a*c + b^2 - b*c + c^2)^(1/2) throughout v and E. First, use subexpr:

E = subexpr(E,'S')

which returns

S =
(a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)

E =
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[ -S, 0, 0]
[ 0, S, 0]
[ 0, 0, a + b + c]

Next, substitute the symbol S into v with

v = simplify(subs(v, S, 'S'))

v =
[ (S - a + b)/(a - c), -(S + a - b)/(a - c), 1]
[ -(S + b - c)/(a - c), (S - b + c)/(a - c), 1]
[ 1, 1, 1]

Now suppose you want to evaluate v at a = 10. Use the subs command:

subs(v, a, 10)

This replaces all occurrences of a in v with 10:

ans =
[ -(S + b - 10)/(c - 10), (S - b + 10)/(c - 10), 1]
[ (S + b - c)/(c - 10), -(S - b + c)/(c - 10), 1]
[ 1, 1, 1]

Notice, however, that the symbolic expression that S represents is unaffected
by this substitution. That is, the symbol a in S is not replaced by 10. The subs
command is also a useful function for substituting in a variety of values for
several variables in a particular expression. For example, suppose that in
addition to substituting a = 10 in S, you also want to substitute the values
for 2 and 10 for b and c, respectively. The way to do this is to set values for a,
b, and c in the workspace. Then subs evaluates its input using the existing
symbolic and double variables in the current workspace. In the example,
you first set

a = 10; b = 2; c = 10;
subs(S)

ans =
8

To look at the contents of the workspace, type:
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whos

which gives

Name Size Bytes Class Attributes

A 3x3 622 sym
E 3x3 1144 sym
S 1x1 184 sym
a 1x1 8 double
ans 1x1 8 double
b 1x1 8 double
c 1x1 8 double
v 3x3 1144 sym

a, b, and c are now variables of class double while A, E, S, and v remain
symbolic expressions (class sym).

If you want to preserve a, b, and c as symbolic variables, but still alter their
value within S, use this procedure.

syms a b c
subs(S, {a, b, c}, {10, 2, 10})

ans =
8

Typing whos reveals that a, b, and c remain 1-by-1 sym objects.

The subs command can be combined with double to evaluate a symbolic
expression numerically. Suppose you have the following expressions

syms t
M = (1 - t^2)*exp(-1/2*t^2);
P = (1 - t^2)*sech(t);

and want to see how M and P differ graphically.

One approach is to type

ezplot(M);
hold on;
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ezplot(P);
hold off;

but this plot does not readily help you identify the curves.
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Instead, combine subs, double, and plot:

T = -6:0.05:6;
MT = double(subs(M, t, T));
PT = double(subs(P, t, T));
plot(T, MT, 'b', T, PT, 'r-.');
title(' ');
legend('M','P');
xlabel('t'); grid;

to produce a multicolored graph that indicates the difference between M and P.
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Finally the use of subs with strings greatly facilitates the solution of problems
involving the Fourier, Laplace, or z-transforms. See the section “Integral
Transforms and Z-Transforms” on page 3-102 for complete details.
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Variable-Precision Arithmetic

In this section...

“Overview” on page 3-60

“Example: Using the Different Kinds of Arithmetic” on page 3-61

“Another Example Using Different Kinds of Arithmetic” on page 3-64

Overview
There are three different kinds of arithmetic operations in this toolbox:

Numeric MATLAB floating-point arithmetic

Rational MuPAD software exact symbolic arithmetic

VPA MuPAD software variable-precision arithmetic

For example, the MATLAB statements

format long
1/2 + 1/3

use numeric computation to produce

ans =
0.833333333333333

With Symbolic Math Toolbox software, the statement

sym(1/2) + 1/3

uses symbolic computation to yield

ans =
5/6

And, also with the toolbox, the statements

digits(25)
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vpa('1/2 + 1/3')

use variable-precision arithmetic to return

ans =
0.8333333333333333333333333

The floating-point operations used by numeric arithmetic are the fastest of the
three, and require the least computer memory, but the results are not exact.
The number of digits in the printed output of MATLAB double quantities
is controlled by the format statement, but the internal representation is
always the eight-byte floating-point representation provided by the particular
computer hardware.

In the computation of the numeric result above, there are actually three
roundoff errors, one in the division of 1 by 3, one in the addition of 1/2 to
the result of the division, and one in the binary to decimal conversion for
the printed output. On computers that use IEEE® floating-point standard
arithmetic, the resulting internal value is the binary expansion of 5/6,
truncated to 53 bits. This is approximately 16 decimal digits. But, in this
particular case, the printed output shows only 15 digits.

The symbolic operations used by rational arithmetic are potentially the
most expensive of the three, in terms of both computer time and memory.
The results are exact, as long as enough time and memory are available to
complete the computations.

Variable-precision arithmetic falls in between the other two in terms of
both cost and accuracy. A global parameter, set by the function digits,
controls the number of significant decimal digits. Increasing the number of
digits increases the accuracy, but also increases both the time and memory
requirements. The default value of digits is 32, corresponding roughly to
floating-point accuracy.

Example: Using the Different Kinds of Arithmetic

Rational Arithmetic
By default, Symbolic Math Toolbox software uses rational arithmetic
operations, i.e., MuPAD software’s exact symbolic arithmetic. Rational
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arithmetic is invoked when you create symbolic variables using the sym
function.

The sym function converts a double matrix to its symbolic form. For example,
if the double matrix is

format short;
A = [1.1,1.2,1.3;2.1,2.2,2.3;3.1,3.2,3.3]

A =
1.1000 1.2000 1.3000
2.1000 2.2000 2.3000
3.1000 3.2000 3.3000

its symbolic form is:

S = sym(A)

S =
[ 11/10, 6/5, 13/10]
[ 21/10, 11/5, 23/10]
[ 31/10, 16/5, 33/10]

For this matrix A, it is possible to discover that the elements are the ratios of
small integers, so the symbolic representation is formed from those integers.
On the other hand, the statement

E = [exp(1) (1 + sqrt(5))/2; log(3) rand]

returns a matrix

E =
2.7183 1.6180
1.0986 0.6324

whose elements are not the ratios of small integers, so

sym(E)

reproduces the floating-point representation in a symbolic form:

ans =
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[ 3060513257434037/1125899906842624, 910872158600853/562949953421312]

[ 2473854946935173/2251799813685248, 1423946432832521/2251799813685248]

Variable-Precision Numbers
Variable-precision numbers are distinguished from the exact rational
representation by the presence of a decimal point. A power of 10 scale factor,
denoted by 'e', is allowed. To use variable-precision instead of rational
arithmetic, create your variables using the vpa function.

For matrices with purely double entries, the vpa function generates the
representation that is used with variable-precision arithmetic. For example,
if you apply vpa to the matrix S defined in the preceding section, with
digits(4), by entering

vpa(S)

MATLAB returns the output

ans =
[ 1.1, 1.2, 1.3]
[ 2.1, 2.2, 2.3]
[ 3.1, 3.2, 3.3]

Applying vpa to the matrix E defined in the preceding section, with
digits(25), by entering

digits(25)
F = vpa(E)

returns

F =
[ 2.718281828459045534884808, 1.618033988749894902525739]
[ 1.098612288668109560063613, 0.6323592462254095103446616]

Converting to Floating-Point
To convert a rational or variable-precision number to its MATLAB
floating-point representation, use the double function.

In the example, both double(sym(E)) and double(vpa(E)) return E.
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Another Example Using Different Kinds of Arithmetic
The next example is perhaps more interesting. Start with the symbolic
expression

f = sym('exp(pi*sqrt(163))')

The statement

format long;
double(f)

produces the printed floating-point value

ans =
2.625374126407687e+017

Using the second argument of vpa to specify the number of digits,

vpa(f,18)

returns

ans =
262537412640768744.0

and, too,

vpa(f,25)

returns

ans =
262537412640768744.0

You might suspect that f actually has an integer value. This suspicion is
reinforced by the 30 digit value:

vpa(f,30)

ans =
262537412640768743.999999999999

Finally, the 40–digit value:
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vpa(f,40)

ans =
262537412640768743.9999999999992500725972

shows that f is very close to, but not exactly equal to, an integer.
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Linear Algebra

In this section...

“Basic Algebraic Operations” on page 3-66

“Linear Algebraic Operations” on page 3-67

“Eigenvalues” on page 3-72

“Jordan Canonical Form” on page 3-77

“Singular Value Decomposition” on page 3-79

“Eigenvalue Trajectories” on page 3-82

Basic Algebraic Operations
Basic algebraic operations on symbolic objects are the same as operations on
MATLAB objects of class double. This is illustrated in the following example.

The Givens transformation produces a plane rotation through the angle t.
The statements

syms t;
G = [cos(t) sin(t); -sin(t) cos(t)]

create this transformation matrix.

G =
[ cos(t), sin(t)]
[ -sin(t), cos(t)]

Applying the Givens transformation twice should simply be a rotation through
twice the angle. The corresponding matrix can be computed by multiplying G
by itself or by raising G to the second power. Both

A = G*G

and

A = G^2
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produce

A =
[ cos(t)^2 - sin(t)^2, 2*cos(t)*sin(t)]
[ (-2)*cos(t)*sin(t), cos(t)^2 - sin(t)^2]

The simple function

A = simple(A)

uses a trigonometric identity to return the expected form by trying
several different identities and picking the one that produces the shortest
representation.

A =
[ cos(2*t), sin(2*t)]
[ -sin(2*t), cos(2*t)]

The Givens rotation is an orthogonal matrix, so its transpose is its inverse.
Confirming this by

I = G.' *G

which produces

I =
[ cos(t)^2 + sin(t)^2, 0]
[ 0, cos(t)^2 + sin(t)^2]

and then

I = simple(I)

I =
[ 1, 0]
[ 0, 1]

Linear Algebraic Operations
The following examples show how to do several basic linear algebraic
operations using Symbolic Math Toolbox software.

The command
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H = hilb(3)

generates the 3-by-3 Hilbert matrix. With format short, MATLAB prints

H =
1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

The computed elements of H are floating-point numbers that are the ratios of
small integers. Indeed, H is a MATLAB array of class double. Converting H
to a symbolic matrix

H = sym(H)

gives

H =
[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

This allows subsequent symbolic operations on H to produce results that
correspond to the infinitely precise Hilbert matrix, sym(hilb(3)), not its
floating-point approximation, hilb(3). Therefore,

inv(H)

produces

ans =
[ 9, -36, 30]
[ -36, 192, -180]
[ 30, -180, 180]

and

det(H)

yields

ans =
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1/2160

You can use the backslash operator to solve a system of simultaneous linear
equations. For example, the commands

% Solve Hx = b
b = [1; 1; 1];
x = H\b

produce the solution

x =
3

-24
30

All three of these results, the inverse, the determinant, and the solution to
the linear system, are the exact results corresponding to the infinitely precise,
rational, Hilbert matrix. On the other hand, using digits(16), the command

digits(16);
V = vpa(hilb(3))

returns

V =
[ 1.0, 0.5, 0.3333333333333333]
[ 0.5, 0.3333333333333333, 0.25]
[ 0.3333333333333333, 0.25, 0.2]

The decimal points in the representation of the individual elements are the
signal to use variable-precision arithmetic. The result of each arithmetic
operation is rounded to 16 significant decimal digits. When inverting the
matrix, these errors are magnified by the matrix condition number, which for
hilb(3) is about 500. Consequently,

inv(V)

which returns

ans =
[ 9.000000000000061, -36.00000000000032, 30.0000000000003]
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[ -36.00000000000032, 192.0000000000017, -180.0000000000015]
[ 30.0000000000003, -180.0000000000015, 180.0000000000014]

shows the loss of two digits. So does

1/det(V)

which gives

ans =
2160.000000000018

and

V\b

which is

ans =
3.000000000000041

-24.00000000000021
30.00000000000019

Since H is nonsingular, calculating the null space of H with the command

null(H)

returns an empty matrix:

ans =
[ empty sym ]

Calculating the column space of H with

colspace(H)

returns a permutation of the identity matrix:

ans =
[ 1, 0, 0]
[ 0, 1, 0]
[ 0, 0, 1]
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A more interesting example, which the following code shows, is to find a value
s for H(1,1) that makes H singular. The commands

syms s
H(1,1) = s
Z = det(H)
sol = solve(Z)

produce

H =
[ s, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

Z =
s/240 - 1/270

sol =
8/9

Then

H = subs(H, s, sol)

substitutes the computed value of sol for s in H to give

H =
[ 8/9, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

Now, the command

det(H)

returns

ans =
0

and
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inv(H)

produces the message

ans =
FAIL

because H is singular. For this matrix, null space and column space are
nontrivial:

Z = null(H)
C = colspace(H)

Z =
3/10
-6/5

1
C =
[ 1, 0]
[ 0, 1]
[ -3/10, 6/5]

It should be pointed out that even though H is singular, vpa(H) is not. For any
integer value d, setting digits(d), and then computing inv(vpa(H)) results
in an inverse with elements on the order of 10^d.

Eigenvalues
The symbolic eigenvalues of a square matrix A or the symbolic eigenvalues
and eigenvectors of A are computed, respectively, using the commands E =
eig(A) and [V,E] = eig(A).

The variable-precision counterparts areE = eig(vpa(A)) and [V,E] =
eig(vpa(A)).

The eigenvalues of A are the zeros of the characteristic polynomial of A,
det(A-x*I), which is computed by poly(A).

The matrix H from the last section provides the first example:

H = sym([8/9 1/2 1/3; 1/2 1/3 1/4; 1/3 1/4 1/5])
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H =
[ 8/9, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

The matrix is singular, so one of its eigenvalues must be zero. The statement

[T,E] = eig(H)

produces the matrices T and E. The columns of T are the eigenvectors of H and
the diagonal elements of E are the eigenvalues of H:

T =

[ 218/285 - (4*12589^(1/2))/285, (4*12589^(1/2))/285 + 218/285, 3/10]

[ 292/285 - 12589^(1/2)/285, 12589^(1/2)/285 + 292/285, -6/5]

[ 1, 1, 1]

E =

[ 32/45 - 12589^(1/2)/180, 0, 0]

[ 0, 12589^(1/2)/180 + 32/45, 0]

[ 0, 0, 0]

It may be easier to understand the structure of the matrices of eigenvectors,
T, and eigenvalues, E, if you convert T and E to decimal notation. To do so,
proceed as follows. The commands

Td = double(T)
Ed = double(E)

return

Td =
-0.8098 2.3397 0.3000
0.6309 1.4182 -1.2000
1.0000 1.0000 1.0000

Ed =
0.0878 0 0

0 1.3344 0
0 0 0
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The first eigenvalue is zero. The corresponding eigenvector (the first column
of Td) is the same as the basis for the null space found in the last section. The
other two eigenvalues are the result of applying the quadratic formula to

x x2 64
45

253
2160

− + which is the quadratic factor in factor(poly(H)):

syms x
g = simple(factor(poly(H))/x);
solve(g)

ans =
32/45 - 12589^(1/2)/180
12589^(1/2)/180 + 32/45

Closed form symbolic expressions for the eigenvalues are possible only when
the characteristic polynomial can be expressed as a product of rational
polynomials of degree four or less. The Rosser matrix is a classic numerical
analysis test matrix that illustrates this requirement. The statement

R = sym(rosser)

generates

R =
[ 611, 196, -192, 407, -8, -52, -49, 29]
[ 196, 899, 113, -192, -71, -43, -8, -44]
[ -192, 113, 899, 196, 61, 49, 8, 52]
[ 407, -192, 196, 611, 8, 44, 59, -23]
[ -8, -71, 61, 8, 411, -599, 208, 208]
[ -52, -43, 49, 44, -599, 411, 208, 208]
[ -49, -8, 8, 59, 208, 208, 99, -911]
[ 29, -44, 52, -23, 208, 208, -911, 99]

The commands

p = poly(R);
pretty(factor(p))

produce
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2 2 2

x (x - 1020) (x - 1040500) (x - 1020 x + 100) (x - 1000)

The characteristic polynomial (of degree 8) factors nicely into the product of
two linear terms and three quadratic terms. You can see immediately that
four of the eigenvalues are 0, 1020, and a double root at 1000. The other four
roots are obtained from the remaining quadratics. Use

eig(R)

to find all these values

ans =
0

1000
1000
1020

510 - 100*26^(1/2)
100*26^(1/2) + 510
(-10)*10405^(1/2)

10*10405^(1/2)

The Rosser matrix is not a typical example; it is rare for a full 8-by-8 matrix
to have a characteristic polynomial that factors into such simple form. If you
change the two “corner” elements of R from 29 to 30 with the commands

S = R; S(1,8) = 30; S(8,1) = 30;

and then try

p = poly(S)

you find

p =
x^8 - 4040*x^7 + 5079941*x^6 + 82706090*x^5...
- 5327831918568*x^4 + 4287832912719760*x^3...
- 1082699388411166000*x^2 + 51264008540948000*x...
+ 40250968213600000
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You also find that factor(p) is p itself. That is, the characteristic polynomial
cannot be factored over the rationals.

For this modified Rosser matrix

F = eig(S)

returns

F =
1020.420188201504727818545749884

1019.9935501291629257348091808173
1019.5243552632016358324933278291
1000.1206982933841335712817075454
999.94691786044276755320289228602

0.21803980548301606860857564424981
-0.17053529728768998575200874607757

-1020.05321425589151659318942526

Notice that these values are close to the eigenvalues of the original Rosser
matrix. Further, the numerical values of F are a result of MuPAD software’s
floating-point arithmetic. Consequently, different settings of digits do not
alter the number of digits to the right of the decimal place.

It is also possible to try to compute eigenvalues of symbolic matrices, but
closed form solutions are rare. The Givens transformation is generated as the
matrix exponential of the elementary matrix

A =
−
⎡

⎣
⎢

⎤

⎦
⎥

0 1
1 0

.

Symbolic Math Toolbox commands

syms t
A = sym([0 1; -1 0]);
G = expm(t*A)

return

G =
[ exp(i*t)/2 + 1/(2*exp(i*t)),i/(2*exp(i*t)) - (i*exp(i*t))/2]
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[(i*exp(i*t))/2 - i/(2*exp(i*t)), exp(i*t)/2
+ 1/(2*exp(i*t))]

You can simplify this expression with the simple command:

[G,how] = simple(G)

G =
[ cos(t), sin(t)]
[ -sin(t), cos(t)]

how =
simplify(100)

Next, the command

g = eig(G)

produces

g =
cos(t) - i*sin(t)
cos(t) + i*sin(t)

You can use simple to simplify this form of g:

[g,how] = simple(g)

g =
1/exp(i*t)

exp(i*t)

how =
rewrite(exp)

Jordan Canonical Form
The Jordan canonical form results from attempts to diagonalize a matrix
by a similarity transformation. For a given matrix A, find a nonsingular
matrix V, so that inv(V)*A*V, or, more succinctly, J = V\A*V, is “as close to
diagonal as possible.” For almost all matrices, the Jordan canonical form is
the diagonal matrix of eigenvalues and the columns of the transformation
matrix are the eigenvectors. This always happens if the matrix is symmetric
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or if it has distinct eigenvalues. Some nonsymmetric matrices with multiple
eigenvalues cannot be diagonalized. The Jordan form has the eigenvalues
on its diagonal, but some of the superdiagonal elements are one, instead of
zero. The statement

J = jordan(A)

computes the Jordan canonical form of A. The statement

[V,J] = jordan(A)

also computes the similarity transformation. The columns of V are the
generalized eigenvectors of A.

The Jordan form is extremely sensitive to perturbations. Almost any change
in A causes its Jordan form to be diagonal. This makes it very difficult to
compute the Jordan form reliably with floating-point arithmetic. It also
implies that A must be known exactly (i.e., without roundoff error, etc.). Its
elements must be integers, or ratios of small integers. In particular, the
variable-precision calculation, jordan(vpa(A)), is not allowed.

For example, let

A = sym([12,32,66,116;-25,-76,-164,-294;
21,66,143,256;-6,-19,-41,-73])

A =
[ 12, 32, 66, 116]
[ -25, -76, -164, -294]
[ 21, 66, 143, 256]
[ -6, -19, -41, -73]

Then

[V,J] = jordan(A)

produces

V =
[ 4, -2, 4, 3]
[ -6, 8, -11, -8]
[ 4, -7, 10, 7]
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[ -1, 2, -3, -2]

J =
[ 1, 1, 0, 0]
[ 0, 1, 0, 0]
[ 0, 0, 2, 1]
[ 0, 0, 0, 2]

Therefore A has a double eigenvalue at 1, with a single Jordan block, and a
double eigenvalue at 2, also with a single Jordan block. The matrix has only
two eigenvectors, V(:,1) and V(:,3). They satisfy

A*V(:,1) = 1*V(:,1)
A*V(:,3) = 2*V(:,3)

The other two columns of V are generalized eigenvectors of grade 2. They
satisfy

A*V(:,2) = 1*V(:,2) + V(:,1)
A*V(:,4) = 2*V(:,4) + V(:,3)

In mathematical notation, with vj = v(:,j), the columns of V and eigenvalues
satisfy the relationships

( )A I v v− =1 2 1

( ) .A I v v− =2 4 3

Singular Value Decomposition
Only the variable-precision numeric computation of the complete singular
vector decomposition is available in the toolbox. One reason for this is that
the formulas that result from symbolic computation are usually too long and
complicated to be of much use. If A is a symbolic matrix of floating-point
or variable-precision numbers, then

S = svd(A)

computes the singular values of A to an accuracy determined by the current
setting of digits. And
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[U,S,V] = svd(A);

produces two orthogonal matrices, U and V, and a diagonal matrix, S, so that

A = U*S*V';

Consider the n-by-n matrix A with elements defined by A(i,j) = 1/(i - j +
1/2). The most obvious way of generating this matrix is

n = 5;
for i=1:n

for j=1:n
A(i,j) = sym(1/(i-j+1/2));

end
end

For n = 5, the matrix is

A

A =
[ 2, -2, -2/3, -2/5, -2/7]
[ 2/3, 2, -2, -2/3, -2/5]
[ 2/5, 2/3, 2, -2, -2/3]
[ 2/7, 2/5, 2/3, 2, -2]
[ 2/9, 2/7, 2/5, 2/3, 2]

It turns out many of the singular values of these matrices are close to π.

The most efficient way to generate the matrix is

n = 5;
[J,I] = meshgrid(1:n);
A = sym(1./(I - J+1/2));

Since the elements of A are the ratios of small integers, vpa(A) produces
a variable-precision representation, which is accurate to digits precision.
Hence

S = svd(vpa(A))
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computes the desired singular values to full accuracy. With n = 16 and
digits(30), the result is

S =
3.14159265358979323846255035973
3.14159265358979323843066846713
3.14159265358979323325290142782
3.14159265358979270342635559052
3.1415926535897543920684990722

3.14159265358767361712392612382
3.14159265349961053143856838564
3.14159265052654880815569479613
3.14159256925492306470284863101
3.14159075458605848728982577118
3.1415575435991808369105065826

3.14106044663470063805218371923
3.13504054399744654843898901261
3.07790297231119748658424727353
2.69162158686066606774782763593
1.20968137605668985332455685355

Compare S with pi, the floating-point representation of π. In the vector
below, the first element is computed by subtraction with variable-precision
arithmetic and then converted to a double:

format long;
double(pi*ones(16,1)-S)

The results are

ans =
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000001
0.000000000000039
0.000000000002120
0.000000000090183
0.000000003063244
0.000000084334870
0.000001899003735
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0.000035109990612
0.000532206955093
0.006552109592347
0.063689681278596
0.449971066729127
1.931911277533103

Since the relative accuracy of pi is pi*eps, which is 6.9757e-16, the result
confirms the suspicion that four of the singular values of the 16-by-16 example
equal π to floating-point accuracy.

Eigenvalue Trajectories
This example applies several numeric, symbolic, and graphic techniques to
study the behavior of matrix eigenvalues as a parameter in the matrix is
varied. This particular setting involves numerical analysis and perturbation
theory, but the techniques illustrated are more widely applicable.

In this example, you consider a 3-by-3 matrix A whose eigenvalues are 1, 2, 3.

First, you perturb A by another matrix E and parameter t A A tE: → + . As

t increases from 0 to 10-6, the eigenvalues 1 1= , 2 2= , 3 3= change to

1 1 5596 0 2726′ = +. . i , 2 1 5596 0 2726′ = −. . i , 3 2 8808′ = . .
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This, in turn, means that for some value of t = < < −τ τ, 0 10 6 , the perturbed

matrix A(t) = A + tE has a double eigenvalue  1 2= . The example shows how
to find the value of t, called τ, where this happens.

The starting point is a MATLAB test example, known as gallery(3).

A = gallery(3)

A =
-149 -50 -154
537 180 546
-27 -9 -25

This is an example of a matrix whose eigenvalues are sensitive to the
effects of roundoff errors introduced during their computation. The actual
computed eigenvalues may vary from one machine to another, but on a typical
workstation, the statements
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format long
e = eig(A)

produce

e =
1.000000000010722
1.999999999991790
2.999999999997399

Of course, the example was created so that its eigenvalues are actually 1, 2,
and 3. Note that three or four digits have been lost to roundoff. This can be
easily verified with the toolbox. The statements

B = sym(A);
e = eig(B)'
p = poly(B)
f = factor(p)

produce

e =
[1, 2, 3]

p =
x^3 - 6*x^2 + 11*x - 6

f =
(x - 3)*(x - 1)*(x - 2)

Are the eigenvalues sensitive to the perturbations caused by roundoff error
because they are “close together”? Ordinarily, the values 1, 2, and 3 would
be regarded as “well separated.” But, in this case, the separation should be
viewed on the scale of the original matrix. If A were replaced by A/1000,
the eigenvalues, which would be .001, .002, .003, would “seem” to be closer
together.

But eigenvalue sensitivity is more subtle than just “closeness.” With a
carefully chosen perturbation of the matrix, it is possible to make two of its
eigenvalues coalesce into an actual double root that is extremely sensitive
to roundoff and other errors.
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One good perturbation direction can be obtained from the outer product of the
left and right eigenvectors associated with the most sensitive eigenvalue. The
following statement creates the perturbation matrix:

E = [130,-390,0;43,-129,0;133,-399,0]

E =
130 -390 0
43 -129 0

133 -399 0

The perturbation can now be expressed in terms of a single, scalar parameter
t. The statements

syms x t
A = A + t*E

replace A with the symbolic representation of its perturbation:

A =
[130*t - 149, - 390*t - 50, -154]
[ 43*t + 537, 180 - 129*t, 546]
[ 133*t - 27, - 399*t - 9, -25]

Computing the characteristic polynomial of this new A

p = simple(poly(A))

gives

p =
11*x - 1221271*t - x^2*(t + 6) + 492512*t*x + x^3 - 6

p is a cubic in x whose coefficients vary linearly with t.

It turns out that when t is varied over a very small interval, from 0 to 1.0e–6,
the desired double root appears. This can best be seen graphically. The first
figure shows plots of p, considered as a function of x, for three different values
of t: t = 0, t = 0.5e–6, and t = 1.0e–6. For each value, the eigenvalues are
computed numerically and also plotted:

x = .8:.01:3.2;
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for k = 0:2
c = sym2poly(subs(p,t,k*0.5e-6));
y = polyval(c,x);
lambda = eig(double(subs(A,t,k*0.5e-6)));
subplot(3,1,3-k)
plot(x,y,'-',x,0*x,':',lambda,0*lambda,'o')
axis([.8 3.2 -.5 .5])
text(2.25,.35,['t = ' num2str( k*0.5e-6 )]);

end

1 1.5 2 2.5 3
−0.5

0

0.5
t = 0

1 1.5 2 2.5 3
−0.5

0

0.5
t = 5e−007

1 1.5 2 2.5 3
−0.5

0

0.5
t = 1e−006

The bottom subplot shows the unperturbed polynomial, with its three roots at
1, 2, and 3. The middle subplot shows the first two roots approaching each
other. In the top subplot, these two roots have become complex and only
one real root remains.

The next statements compute and display the actual eigenvalues

e = eig(A);
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ee = subexpr(e);

sigma =
(1221271*t)/2 + (t + 6)^3/27 - ((492512*t + 11)*(t + 6))/6 +...
(((492512*t)/3 - (t + 6)^2/9 + 11/3)^3 + ((1221271*t)/2 +...
(t + 6)^3/27 - ((492512*t + 11)*(t + 6))/6 + 3)^2)^(1/2) + 3

pretty(ee)

showing that e(2) and e(3) form a complex conjugate pair:

+- -+

| 2 |

| 1 492512 t (t + 6) 11 |

| - -------- - -------- + -- |

| t 3 3 9 3 |

| - + sigma - ------------------------ + 2 |

| 3 1 |

| - |

| 3 |

| sigma |

| |

| / 2 \ |

| | 1 492512 t (t + 6) 11 | |

| | - -------- - -------- + -- | |

| 1/2 | 3 3 9 3 | |

| 3 i | sigma + ------------------------ | |

| 1 2 | 1 | |

| - 492512 t (t + 6) 11 | - | |

| 3 -------- - -------- + -- | 3 | |

| t sigma 3 9 3 \ sigma / |

| - - ------ + ------------------------ - -------------------------------------------- + 2 |

| 3 2 1 2 |

| - |

| 3 |

| 2 sigma |

| |

| / 2 \ |

| | 1 492512 t (t + 6) 11 | |
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| | - -------- - -------- + -- | |

| 1/2 | 3 3 9 3 | |

| 3 i | sigma + ------------------------ | |

| 1 2 | 1 | |

| - 492512 t (t + 6) 11 | - | |

| 3 -------- - -------- + -- | 3 | |

| t sigma 3 9 3 \ sigma / |

| - - ------ + ------------------------ + -------------------------------------------- + 2 |

| 3 2 1 2 |

| - |

| 3 |

| 2 sigma |

+- -+

Next, the symbolic representations of the three eigenvalues are evaluated at
many values of t

tvals = (2:-.02:0)' * 1.e-6;
r = size(tvals,1);
c = size(e,1);
lambda = zeros(r,c);
for k = 1:c

lambda(:,k) = double(subs(e(k),t,tvals));
end
plot(lambda,tvals)
xlabel('\lambda'); ylabel('t');
title('Eigenvalue Transition')

to produce a plot of their trajectories.
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Eigenvalue Transition

Above t = 0.8e-6, the graphs of two of the eigenvalues intersect, while below
t = 0.8e–6, two real roots become a complex conjugate pair. What is the precise
value of t that marks this transition? Let τ denote this value of t.

One way to find the exact value of τ involves polynomial discriminants. The
discriminant of a quadratic polynomial is the familiar quantity under the
square root sign in the quadratic formula. When it is negative, the two roots
are complex.

There is no discrim function in the toolbox, but there is one in the MuPAD
language. The statement

doc(symengine,'discrim')

gives the MuPAD help for the function.
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This shows that the discrim function is in the polylib library. Use these
commands

syms a b c x
evalin(symengine,'polylib::discrim(a*x^2+b*x+c, x)')

to show the generic quadratic’s discriminant, b2 - 4ac:

ans =
b^2 - 4*a*c

The discriminant for the perturbed cubic characteristic polynomial is
obtained, using

discrim = feval(symengine,'polylib::discrim',p,x)

which produces

discrim =
242563185060*t^4 - 477857003880091920*t^3 +...
1403772863224*t^2 - 5910096*t + 4

The quantity τ is one of the four roots of this quartic. You can find a numeric
value for τ with the following code.

s = solve(discrim);
tau = vpa(s)
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tau =

1970031.04061804553618913725474883634597991201389

0.000000783792490596794010485879469854518820556090553664

0.00000107692481604921513807537160160597784208236311263 - 0.00000308544636502289065492747*i

0.00000308544636502289065492746538275636180217710757295*i + 0.00000107692481604921513807537160160597784249167873707

Of the four solutions, you know that

tau = tau(2)

is the transition point

tau =
0.00000078379249059679401048084

because it is closest to the previous estimate.

A more generally applicable method for finding τ is based on the fact that, at a
double root, both the function and its derivative must vanish. This results in
two polynomial equations to be solved for two unknowns. The statement

sol = solve(p,diff(p,'x'))

solves the pair of algebraic equations p = 0 and dp/dx = 0 and produces

sol =
t: [4x1 sym]
x: [4x1 sym]

Find τ now by

format short
tau = double(sol.t(2))

which reveals that the second element of sol.t is the desired value of τ:

tau =
7.8379e-007

Therefore, the second element of sol.x
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sigma = double(sol.x(2))

is the double eigenvalue

sigma =
1.5476

To verify that this value of τ does indeed produce a double eigenvalue at

 = 1 5476. , substitute τ for t in the perturbed matrix A(t) = A + tE and find
the eigenvalues of A(t). That is,

e = eig(double(subs(A, t, tau)))

e =
1.5476
1.5476
2.9048

confirms that  = 1 5476. is a double eigenvalue of A(t) for t = 7.8379e–07.
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Solving Equations

In this section...

“Solving Algebraic Equations” on page 3-93

“Several Algebraic Equations” on page 3-94

“Single Differential Equation” on page 3-97

“Several Differential Equations” on page 3-100

Solving Algebraic Equations
If S is a symbolic expression,

solve(S)

attempts to find values of the symbolic variable in S (as determined by
symvar) for which S is zero. For example,

syms a b c x
S = a*x^2 + b*x + c;
solve(S)

uses the familiar quadratic formula to produce

ans =
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)
-(b - (b^2 - 4*a*c)^(1/2))/(2*a)

This is a symbolic vector whose elements are the two solutions.

If you want to solve for a specific variable, you must specify that variable
as an additional argument. For example, if you want to solve S for b, use
the command

b = solve(S,b)

which returns

b =
-(a*x^2 + c)/x
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Note that these examples assume equations of the form f(x) = 0. If you need
to solve equations of the form f(x) = q(x), you must use quoted strings. In
particular, the command

s = solve('cos(2*x) + sin(x) = 1')

returns a vector with three solutions.

s =
0

pi/6
(5*pi)/6

There are also solutions at each of these results plus kπ for integer k, as you
can see in the MuPAD solution:

Several Algebraic Equations
This section explains how to solve systems of equations using Symbolic Math
Toolbox software. As an example, suppose you have the system

x y

x
y

2 2 0

2

=

− =  ,

and you want to solve for x and y. First, create the necessary symbolic objects.

syms x y;
alpha = sym('alpha');

There are several ways to address the output of solve. One is to use a
two-output call

[x, y] = solve(x^2*y^2, x-y/2 - alpha)
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which returns

x =
alpha

0

y =
0

(-2)*alpha

Modify the first equation to x2y2 = 1 and there are more solutions.

eqs1 = 'x^2*y^2=1, x-y/2-alpha';
[x,y] = solve(eqs1)

produces four distinct solutions:

x =
alpha/2 + (alpha^2 + 2)^(1/2)/2
alpha/2 + (alpha^2 - 2)^(1/2)/2
alpha/2 - (alpha^2 + 2)^(1/2)/2
alpha/2 - (alpha^2 - 2)^(1/2)/2

y =
(alpha^2 + 2)^(1/2) - alpha
(alpha^2 - 2)^(1/2) - alpha

- alpha - (alpha^2 + 2)^(1/2)
- alpha - (alpha^2 - 2)^(1/2)

Since you did not specify the dependent variables, solve uses symvar to
determine the variables.

This way of assigning output from solve is quite successful for “small”
systems. Plainly, if you had, say, a 10-by-10 system of equations, typing

[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] = solve(...)

is both awkward and time consuming. To circumvent this difficulty, solve
can return a structure whose fields are the solutions. In particular, consider
the system u^2 - v^2 = a^2, u + v = 1, a^2 - 2*a = 3. The command
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S = solve('u^2 - v^2 = a^2', 'u + v = 1', 'a^2 - 2*a = 3')

returns

S =
a: [2x1 sym]
u: [2x1 sym]
v: [2x1 sym]

The solutions for a reside in the “a-field” of S. That is,

S.a

produces

ans =
-1
3

Similar comments apply to the solutions for u and v. The structure S can
now be manipulated by field and index to access a particular portion of the
solution. For example, if you want to examine the second solution, you can
use the following statement

s2 = [S.a(2), S.u(2), S.v(2)]

to extract the second component of each field.

s2 =
[ 3, 5, -4]

The following statement

M = [S.a, S.u, S.v]

creates the solution matrix M

M =
[ -1, 1, 0]
[ 3, 5, -4]

whose rows comprise the distinct solutions of the system.
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Linear systems of simultaneous equations can also be solved using matrix
division. For example,

clear u v x y
syms u v x y
S = solve(x + 2*y - u, 4*x + 5*y - v);
sol = [S.x; S.y]

A = [1 2; 4 5];
b = [u; v];
z = A\b

results in

sol =
(2*v)/3 - (5*u)/3

(4*u)/3 - v/3

z =
(2*v)/3 - (5*u)/3

(4*u)/3 - v/3

Thus s and z produce the same solution, although the results are assigned
to different variables.

Single Differential Equation
The function dsolve computes symbolic solutions to ordinary differential
equations. The equations are specified by symbolic expressions containing
the letter D to denote differentiation. The symbols D2, D3, ... DN, correspond to
the second, third, ..., Nth derivative, respectively. Thus, D2y is the toolbox
equivalent of d2y/dt2. The dependent variables are those preceded by D and
the default independent variable is t. Note that names of symbolic variables
should not contain D. The independent variable can be changed from t to some
other symbolic variable by including that variable as the last input argument.

Initial conditions can be specified by additional equations. If initial conditions
are not specified, the solutions contain constants of integration, C1, C2, etc.

The output from dsolve parallels the output from solve. That is, you can call
dsolve with the number of output variables equal to the number of dependent
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variables or place the output in a structure whose fields contain the solutions
of the differential equations.

Example 1
The following call to dsolve

dsolve('Dy=t*y')

uses y as the dependent variable and t as the default independent variable.

The output of this command is

ans =
C5*exp(t^2/2)

y = C*exp(t^2/2) is a solution to the equation for any constant C.

To specify an initial condition, use

y = dsolve('Dy=t*y', 'y(0)=2')

This produces

y =
2*exp(t^2/2)

Notice that y is in the MATLAB workspace, but the independent variable t
is not. Thus, the command diff(y,t) returns an error. To place t in the
workspace, enter syms t.

Example 2
Nonlinear equations may have multiple solutions, even when initial
conditions are given:

x = dsolve('(Dx+x)^2=1','x(0)=0')

results in

x =
1/exp(t) - 1
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1 - 1/exp(t)

Example 3
Here is a second-order differential equation with two initial conditions, and
the default independent variable changed to x. The commands

y = dsolve('D2y=cos(2*x)-y','y(0)=1','Dy(0)=0', 'x');
simplify(y, 400)

produce

ans =
1 - (2*(cos(x) - 1)^2)/3

Example 4
The key issues in this example are the order of the equation and the initial
conditions. To solve the ordinary differential equation

d u

dx
u

3

3
=

u u u( ) , ( ) , ( ) ,0 1 0 1 0= ′ = − ′′ =  

with x as the independent variable, type

u = dsolve('D3u=u','u(0)=1','Du(0)=-1','D2u(0) = pi','x')

Use D3u to represent d3u/dx3 and D2u(0) for ′′u ( )0 .

u =
(pi*exp(x))/3 - (cos((3^(1/2)*x)/2)*(pi/3 - 1))/exp(x/2) ...
- (3^(1/2)*sin((3^(1/2)*x)/2)*(pi + 1))/(3*exp(x/2))

Further ODE Examples
This table shows a few more examples of differential equations and their
Symbolic Math Toolbox syntax. The final entry in the table is the Airy
differential equation, whose solution is referred to as the Airy function.
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Differential Equation MATLAB Command

dy
dt

y t e t+ = −4 ( )

y(0) = 1

y = dsolve('Dy+4*y = exp(-t)',
'y(0) = 1')

2x2y′′ + 3xy′ – y = 0
( ′ = d/dx)

y = dsolve('2*x^2*D2y + 3*x*Dy - y =
0','x')

d y

dx
xy x

2

2
= ( )

y y K( ) , ( ) ( )/0 0 3
1

2 31 3= = 


(The Airy equation)

y = dsolve('D2y = x*y','y(0) = 0',
'y(3) = besselk(1/3, 2*sqrt(3))/pi',
'x')

Several Differential Equations
The function dsolve can also handle several ordinary differential equations
in several variables, with or without initial conditions. For example, here is a
pair of linear, first-order equations.

S = dsolve('Df = 3*f + 4*g', 'Dg = -4*f + 3*g')

The computed solutions are returned in the structure S. You can determine
the values of f and g by typing

f = S.f
g = S.g

f =
C5*cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)

g =
C1*cos(4*t)*exp(3*t) - C5*sin(4*t)*exp(3*t)

If you prefer to recover f and g directly as well as include initial conditions,
type
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[f,g] = dsolve('Df=3*f+4*g, Dg =-4*f+3*g',
'f(0) = 0, g(0) = 1')

f =
sin(4*t)*exp(3*t)

g =
cos(4*t)*exp(3*t)
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Integral Transforms and Z-Transforms

In this section...

“The Fourier and Inverse Fourier Transforms” on page 3-102

“The Laplace and Inverse Laplace Transforms” on page 3-109

“The Z– and Inverse Z–transforms” on page 3-115

The Fourier and Inverse Fourier Transforms
The Fourier transform of a function f(x) is defined as

F f w f x e dxiwx[ ] = −

−∞

∞

∫( ) ( ) ,

and the inverse Fourier transform (IFT) as

F f x f w e duiwx−

−∞

∞
[ ] = ∫1 1

2
( ) ( ) .



We refer to this formulation as the Fourier transform of f with respect to x as
a function of w. Or, more concisely, the Fourier transform of f with respect
to x at w. Mathematicians often use the notation F[f] to denote the Fourier
transform of f. In this setting, the transform is taken with respect to the
independent variable of f (if f = f(t), then t is the independent variable; f = f(x)
implies that x is the independent variable, etc.) at the default variable w.
We refer to F[f] as the Fourier transform of f at w and F–1[f] is the IFT of f
at x. See fourier and ifourier in the reference pages for tables that show
the Symbolic Math Toolbox commands equivalent to various mathematical
representations of the Fourier and inverse Fourier transforms.

For example, consider the Fourier transform of the Cauchy density function,
(π(1 + x2))–1:

syms x
cauchy = 1/(pi*(1+x^2));
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fcauchy = fourier(cauchy)

fcauchy =
((pi*heaviside(w))/exp(w) + pi*heaviside(-w)*exp(w))/pi

fcauchy = expand(fcauchy)

fcauchy =
heaviside(w)/exp(w) + heaviside(-w)*exp(w)

ezplot(fcauchy)

The Fourier transform is symmetric, since the original Cauchy density
function is symmetric.

To recover the Cauchy density function from the Fourier transform, call
ifourier:

finvfcauchy = ifourier(fcauchy)
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finvfcauchy =
-(1/(i*x - 1) - 1/(i*x + 1))/(2*pi)

simplify(finvfcauchy)

ans =
1/(pi*(x^2 + 1))

An application of the Fourier transform is the solution of ordinary and partial
differential equations over the real line. Consider the deformation of an
infinitely long beam resting on an elastic foundation with a shock applied to
it at a point. A “real world” analogy to this phenomenon is a set of railroad
tracks atop a road bed.

The shock could be induced by a pneumatic hammer blow.

The differential equation idealizing this physical setting is

d y

dx

k
EI

y
EI

x x
4

4
1+ = − ∞ < < ∞δ( ), . 

Here, E represents elasticity of the beam (rail road track), I is the “beam
constant,” and k is the spring (road bed) stiffness. The shock force on the
right hand side of the differential equation is modeled by the Dirac Delta
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function δ(x). If you are unfamiliar with δ(x), you may be surprised to learn
that (despite its name), it is not a function at all. Rather, δ(x) is an example of
what mathematicians call a distribution. The Dirac Delta function (named
after the physicist Paul Dirac) has the following important property

f x y y dy f x( ) ( ) ( ).− =
−∞

∞

∫ δ

A definition of the Dirac Delta function is

 ( ) lim ( ),( / , / )x n x
n

n n=
→∞

−1 2 1 2

where

( / , / ) ( )− =
− < <⎧

⎨
⎪

⎩⎪
1 2 1 2

1
1

2
1

2
0

n n x n
x

n
for 

otherwise.

You can evaluate the Dirac Delta function at a point (say) x = 3, using the
commands

syms x
del = sym('dirac(x)');
vpa(subs(del,x,3))

which return

ans =
0.0

Returning to the differential equation, let Y(w) = F[y(x)](w) and
Δ(w) = F[δ(x)](w). Indeed, try the command fourier(del,x,w). The Fourier
transform turns differentiation into exponentiation, and, in particular,

F
d y

dx
w w Y w

4

4
4⎡

⎣
⎢

⎤

⎦
⎥ =( ) ( ).
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To see a demonstration of this property, try this

syms w x
fourier(diff(sym('y(x)'), x, 4), x, w)

which returns

ans =
w^4*transform::fourier(y(x), x, -w)

Note that you can call the fourier command with one, two, or three inputs
(see the reference pages for fourier). With a single input argument,
fourier(f) returns a function of the default variable w. If the input argument
is a function of w, fourier(f) returns a function of t. All inputs to fourier
must be symbolic objects.

We now see that applying the Fourier transform to the differential equation
above yields the algebraic equation

w
k

EI
Y w w4 +⎛

⎝⎜
⎞
⎠⎟

=( ) ( ),Δ

or

Y(w) = Δ(w)G(w),

where

G w
w

k
EI

F g x w( ) ( ) ( )=
+

= [ ]1
4

for some function g(x). That is, g is the inverse Fourier transform of G:

g(x) = F–1[G(w)](x)

The Symbolic Math Toolbox counterpart to the IFT is ifourier. This behavior
of ifourier parallels fourier with one, two, or three input arguments (see
the reference pages for ifourier).
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Continuing with the solution of our differential equation, we observe that
the ratio

K
EI

is a relatively “large” number since the road bed has a high stiffness constant
k and a rail road track has a low elasticity E and beam constant I. We make
the simplifying assumption that

K
EI

= 1024.

This is done to ease the computation of F –1[G(w)](x). Proceeding, we type

G = 1/(w^4 + 1024);
g = ifourier(G, w, x);
g = simplify(g);
pretty(g)

and see

1/2 / pi \ 1/2 / pi \

2 sin| -- + 4 x | heaviside(x) 2 heaviside(-x) sin| -- - 4 x | exp(4 x)

\ 4 / \ 4 /

--------------------------------- + -------------------------------------------

512 exp(4 x) 512

Notice that g contains the Heaviside distribution

H x
x
x
x

( )
.

=
>
<
=

⎧
⎨
⎪

⎩⎪

1 0
0 0

0

for
for

1/2 for

Since Y is the product of Fourier transforms, y is the convolution of the
transformed functions. That is, F[y] = Y(w) = Δ(w) G(w) = F[δ] F[g] implies
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y x g x g x y y dy g x( ) ( )( ) ( ) ( ) ( ).= ∗ = − =
−∞

∞

∫ 

by the special property of the Dirac Delta function. To plot this function, we
must substitute the domain of x into y(x), using the subs command.

XX = -3:0.05:3;
YY = double(subs(g, x, XX));
plot(XX, YY)
title('Beam Deflection for a Point Shock')
xlabel('x'); ylabel('y(x)');

The resulting graph
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shows that the impact of a blow on a beam is highly localized; the greatest
deflection occurs at the point of impact and falls off sharply from there. This
is the behavior we expect from experience.

The Laplace and Inverse Laplace Transforms
The Laplace transform of a function f(t) is defined as

L f s f t e dtts[ ]( ) = −
∞

∫ ( ) ,
0
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while the inverse Laplace transform (ILT) of f(s) is

L f t
i

f s e dsst

c i

c i
−

− ∞

+ ∞
[ ] = ∫1 1

2
( ) ( ) ,



where c is a real number selected so that all singularities of f(s) are to the left
of the line s = c. The notation L[f] denotes the Laplace transform of f at s.
Similarly, L–1[f] is the ILT of f at t.

The Laplace transform has many applications including the solution
of ordinary differential equations/initial value problems. Consider the
resistance-inductor-capacitor (RLC) circuit below.

Let Rj and Ij, j = 1, 2, 3 be resistances (measured in ohms) and currents
(amperes), respectively; L be inductance (henrys), and C be capacitance
(farads); E(t) be the electromotive force, and Q(t) be the charge.
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By applying Kirchhoff’s voltage and current laws, Ohm’s Law, and Faraday’s
Law, you can arrive at the following system of simultaneous ordinary
differential equations.

dI
dt

R
L

dQ
dt

R R
L

I I I1 2 1 2
1 1 00+ = − =, ( ) . 

dQ
dt R R

E t
C

Q t
R

R R
I Q Q=

+
−⎛

⎝⎜
⎞
⎠⎟
+

+
=1 1

0
3 2

2

3 2
1 0( ) ( ) , ( ) . 

Let’s solve this system of differential equations using laplace. We will first
treat the Rj, L, and C as (unknown) real constants and then supply values
later on in the computation.

syms R1 R2 R3 L C real
dI1 = sym('diff(I1(t),t)'); dQ = sym('diff(Q(t),t)');
I1 = sym('I1(t)'); Q = sym('Q(t)');
syms t s
E = sin(t); % Voltage
eq1 = dI1 + R2*dQ/L - (R2 - R1)*I1/L;
eq2 = dQ - (E - Q/C)/(R2 + R3) - R2*I1/(R2 + R3);

At this point, we have constructed the equations in the MATLAB workspace.
An approach to solving the differential equations is to apply the Laplace
transform, which we will apply to eq1 and eq2. Transforming eq1 and eq2

L1 = laplace(eq1,t,s)
L2 = laplace(eq2,t,s)

returns

L1 =
s*laplace(I1(t), t, s) - I1(0)
+ ((R1 - R2)*laplace(I1(t), t, s))/L
- (R2*(Q(0) - s*laplace(Q(t), t, s)))/L

L2 =
s*laplace(Q(t), t, s) - Q(0)
- (R2*laplace(I1(t), t, s))/(R2 + R3) - (C/(s^2 + 1)
- laplace(Q(t), t, s))/(C*(R2 + R3))
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Now we need to solve the system of equations L1 = 0, L2 = 0 for
laplace(I1(t),t,s) and laplace(Q(t),t,s), the Laplace transforms of I1
and Q, respectively. To do this, we need to make a series of substitutions. For
the purposes of this example, use the quantities R1 = 4 Ω (ohms), R2 = 2 Ω,
R3 = 3 Ω, C = 1/4 farads, L = 1.6 H (henrys), I1(0) = 15 A (amperes), and Q(0)
= 2 A/sec. Substituting these values in L1

syms LI1 LQ
NI1 = subs(L1,{R1,R2,R3,L,C,'I1(0)','Q(0)'}, ...

{4,2,3,1.6,1/4,15,2})

returns

NI1 =
s*laplace(I1(t), t, s) + (5*s*laplace(Q(t), t, s))/4
+ (5*laplace(I1(t), t, s))/4 - 35/2

The substitution

NQ =
subs(L2,{R1,R2,R3,L,C,'I1(0)','Q(0)'},{4,2,3,1.6,1/4,15,2})

returns

NQ =
s*laplace(Q(t), t, s) - 1/(5*(s^2 + 1))
+ (4*laplace(Q(t), t, s))/5 - (2*laplace(I1(t), t, s))/5 - 2

To solve for laplace(I1(t),t,s) and laplace(Q(t),t,s), we make a final
pair of substitutions. First, replace the strings 'laplace(I1(t),t,s)' and
'laplace(Q(t),t,s)' by the syms LI1 and LQ, using

NI1 =...
subs(NI1,{'laplace(I1(t),t,s)','laplace(Q(t),t,s)'},{LI1,LQ})

to obtain

NI1 =
(5*LI1)/4 + LI1*s + (5*LQ*s)/4 - 35/2

Collecting terms

NI1 = collect(NI1,LI1)
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gives

NI1 =
(s + 5/4)*LI1 + (5*LQ*s)/4 - 35/2

A similar string substitution

NQ = ...
subs(NQ,{'laplace(I1(t),t,s)','laplace(Q(t),t,s)'},{LI1,LQ})

yields

NQ =
(4*LQ)/5 - (2*LI1)/5 + LQ*s - 1/(5*(s^2 + 1)) - 2

which, after collecting terms,

NQ = collect(NQ,LQ)

gives

NQ =
(s + 4/5)*LQ - (2*LI1)/5 - 1/(5*(s^2 + 1)) - 2

Now, solving for LI1 and LQ

[LI1, LQ] = solve(NI1, NQ, LI1, LQ)

we obtain

LI1 =

(300*s^3 + 280*s^2 + 295*s + 280)/(20*s^4 + 51*s^3 + 40*s^2 + 51*s + 20)

LQ =

(40*s^3 + 190*s^2 + 44*s + 195)/(20*s^4 + 51*s^3 + 40*s^2 + 51*s + 20)

To recover I1 and Q we need to compute the inverse Laplace transform of LI1
and LQ. Inverting LI1

I1 = ilaplace(LI1, s, t)

produces
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I1 =
(15*(cosh((1001^(1/2)*t)/40)
- (293*1001^(1/2)*sinh((1001^(1/2)*t)/40))/21879))/exp((51*t)/40)
- (5*sin(t))/51

Inverting LQ

Q = ilaplace(LQ, s, t)

yields

Q =

(4*sin(t))/51 - (5*cos(t))/51 + (107*(cosh((1001^(1/2)*t)/40)

+ (2039*1001^(1/2)*sinh((1001^(1/2)*t)/40))/15301))/(51*exp((51*t)/40))

Now let’s plot the current I1(t) and charge Q(t) in two different time
domains, 0 ≤ t ≤ 10 and 5 ≤ t ≤ 25. The statements

subplot(2,2,1); ezplot(I1,[0,10]);
title('Current'); ylabel('I1(t)'); grid
subplot(2,2,2); ezplot(Q,[0,10]);
title('Charge'); ylabel('Q(t)'); grid
subplot(2,2,3); ezplot(I1,[5,25]);
title('Current'); ylabel('I1(t)'); grid
text(7,0.25,'Transient'); text(16,0.125,'Steady State');
subplot(2,2,4); ezplot(Q,[5,25]);
title('Charge'); ylabel('Q(t)'); grid
text(7,0.25,'Transient'); text(15,0.16,'Steady State');

generate the desired plots
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Note that the circuit’s behavior, which appears to be exponential decay in
the short term, turns out to be oscillatory in the long term. The apparent
discrepancy arises because the circuit’s behavior actually has two components:
an exponential part that decays rapidly (the “transient” component) and an
oscillatory part that persists (the “steady-state” component).

The Z– and Inverse Z–transforms
The (one-sided) z-transform of a function f(n) is defined as

Z f z f n z n

n
[ ]( ) = −

=

∞

∑ ( ) .
0

The notation Z[f] refers to the z-transform of f at z. Let R be a positive number
so that the function g(z) is analytic on and outside the circle |z| = R. Then
the inverse z-transform (IZT) of g at n is defined as
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Z g n
i

g z z dz nn

z R

− −

=

[ ] = =∫1 11
2

1 2( ) ( ) , , ,...
 �  

The notation Z–1[f] means the IZT of f at n. The Symbolic Math Toolbox
commands ztrans and iztrans apply the z-transform and IZT to symbolic
expressions, respectively. See ztrans and iztrans for tables showing various
mathematical representations of the z-transform and inverse z-transform and
their Symbolic Math Toolbox counterparts.

The z-transform is often used to solve difference equations. In particular,
consider the famous “Rabbit Problem.” That is, suppose that rabbits reproduce
only on odd birthdays (1, 3, 5, 7, ...). If p(n) is the rabbit population at year n,
then p obeys the difference equation

p(n+2) = p(n+1) + p(n), p(0) = 1, p(1) = 2.

We can use ztrans to find the population each year p(n). First, we apply
ztrans to the equations

pn = sym('p(n)');
pn1 = sym('p(n+1)');
pn2 = sym('p(n+2)');
syms n z
eq = pn2 - pn1 - pn;
Zeq = ztrans(eq, n, z)

to obtain

Zeq =
z*p(0) - z*ztrans(p(n), n, z) - z*p(1) + z^2*ztrans(p(n), n, z)

- z^2*p(0) - ztrans(p(n), n, z)

Next, replace ’ztrans(p(n), n, z)' with Pz and insert the initial conditions
for p(0) and p(1).

syms Pz
Zeq = subs(Zeq,{'ztrans(p(n), n, z)', 'p(0)',
'p(1)'}, {Pz, 1, 2})

to obtain
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Zeq =
Pz*z^2 - z - Pz*z - Pz - z^2

Collecting terms

eq = collect(Zeq, Pz)

yields

eq =
(z^2 - z - 1)*Pz - z^2 - z

Now solve for Pz

P = solve(eq, Pz)

to obtain

P =
-(z^2 + z)/(- z^2 + z + 1)

To recover p(n), we take the inverse z-transform of P.

p = iztrans(P, z, n);
p = simple(p)

The result is a bit complicated, but explicit:

p =
(3*5^(1/2)*(1/2 - 5^(1/2)/2)^(n - 1))/5 -

(3*5^(1/2)*(5^(1/2)/2 + 1/2)^(n - 1))/5 +
(4*(-1)^n*cos(n*(pi/2 + i*asinh(1/2))))/i^n

This result can be used as is. But to simplify this result even further, use the
MuPAD rewrite function:

p = feval(symengine,'rewrite',p ,'exp');
p = simple(p)

p =
(3*5^(1/2)*(1/2 - 5^(1/2)/2)^(n - 1))/5 - ...

(3*5^(1/2)*(5^(1/2)/2 + 1/2)^(n - 1))/5 + ...
2*exp(pi*i*n)*(2/(5^(1/2) + 1))^n + 2*(5^(1/2)/2 + 1/2)^n
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Replace the expression exp(pi*i*n) with (-1)^n:

p = subs(p,exp(pi*i*n),(-1)^n);
p = simple(p)

p =
((5^(1/2)/2 + 1/2)^n*(3*5^(1/2) + 5) - ...

(1/2 - 5^(1/2)/2)^n*(3*5^(1/2) + 15) + ...
20*(-1)^n*(2/(5^(1/2) + 1))^n)/10

pretty(p)

/ 1/2 \n / 1/2 \n

| 5 1 | 1/2 | 1 5 | 1/2 n / 2 \n

| ---- + - | (3 5 + 5) - | - - ---- | (3 5 + 15) + 20 (-1) | -------- |

\ 2 2 / \ 2 2 / | 1/2 |

\ 5 + 1 /

---------------------------------------------------------------------------------

10

Finally, plot p:

m = 1:10;
y = double(subs(p,n,m));
plot(m,y,'rO')
title('Rabbit Population');
xlabel('years'); ylabel('p');
grid on

to show the growth in rabbit population over time.
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Special Functions of Applied Mathematics

In this section...

“Numerical Evaluation of Special Functions Using mfun” on page 3-120

“Syntax and Definitions of mfun Special Functions” on page 3-121

“Diffraction Example” on page 3-126

Numerical Evaluation of Special Functions Using
mfun
Over 50 of the special functions of classical applied mathematics are available
in the toolbox. These functions are accessed with the mfun function, which
numerically evaluates special functions for the specified parameters. This
allows you to evaluate functions that are not available in standard MATLAB
software, such as the Fresnel cosine integral. In addition, you can evaluate
several MATLAB special functions in the complex plane, such as the error
function erf.

For example, suppose you want to evaluate the hyperbolic cosine integral at
the points 2 + i, 0, and 4.5. Look in the tables in “Syntax and Definitions of
mfun Special Functions” on page 3-121 to find the available functions and
their syntax. You can also enter the command

mfunlist

to see the list of functions available for mfun. This list provides a brief
mathematical description of each function, its mfun name, and the parameters
it needs. From the tables or list, you can see that the hyperbolic cosine
integral is called Chi, and it takes one complex argument.

Type

z = [2 + i 0 4.5];
w = mfun('Chi', z)

which returns

w =
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2.0303 + 1.7227i NaN 13.9658

mfun returns NaNs where the function has a singularity. The hyperbolic cosine
integral has a singularity at z = 0.

Note mfun functions perform numerical, not symbolic, calculations. The
input parameters should be scalars, vectors, or matrices of type double, or
complex doubles, not symbolic variables.

Syntax and Definitions of mfun Special Functions
The following conventions are used in the next table, unless otherwise
indicated in the Arguments column.

x, y real argument

z, z1, z2 complex argument

m, n integer argument

MFUN Special Functions

Function Name Definition mfun Name Arguments

Bernoulli
numbers and
polynomials

Generating functions:

e

e
B x

t
n

xt

t n

n

n−
= ⋅

−

=

∞

∑
1

1

0
( )

!

bernoulli(n)

bernoulli(n,t)
n ≥ 0

0 2< <t π

Bessel functions BesselI, BesselJ—Bessel functions
of the first kind.
BesselK, BesselY—Bessel functions
of the second kind.

BesselJ(v,x)

BesselY(v,x)

BesselI(v,x)

BesselK(v,x)

v is real.

Beta function
B x y

x y
x y

( , )
( ) ( )
( )

= ⋅
+

Γ Γ
Γ

Beta(x,y)
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MFUN Special Functions (Continued)

Function Name Definition mfun Name Arguments

Binomial
coefficients

m
n

m
n m n

⎛
⎝⎜

⎞
⎠⎟
=

−( )
!

! !

= +
+( ) − +
Γ

Γ Γ
( )

( )
m

n m n
1

1 1

binomial(m,n)

Complete elliptic
integrals

Legendre’s complete elliptic integrals
of the first, second, and third kind

EllipticK(k)

EllipticE(k)

EllipticPi(a,k)

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Complete elliptic
integrals with
complementary
modulus

Associated complete elliptic integrals
of the first, second, and third kind
using complementary modulus

EllipticCK(k)

EllipticCE(k)

EllipticCPi(a,k)

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Complementary
error function
and its iterated
integrals

erfc z e dt erf zt

z

( ) ( )= ⋅ = −−
∞

∫2
1

2



erfc z e z( , )− = ⋅ −1
2 2



erfc n z erfc n t dt
z

( , ) ( , )= −
∞

∫ 1

erfc(z)

erfc(n,z)

n > 0

Dawson’s
integral F x e e dtx t

x

( ) = ⋅− ∫
2 2

0

dawson(x)

Digamma
function Ψ Γ Γ

Γ
( ) ln( ( ))

( )
( )

x
d
dx

x
x
x

= =
′ Psi(x)
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MFUN Special Functions (Continued)

Function Name Definition mfun Name Arguments

Dilogarithm
integral f x

t
t

dt
x

( )
ln( )=
−∫ 1

1

dilog(x) x > 1

Error function
erf z e dtt

z

( ) = −∫2 2

0

erf(z)

Euler numbers
and polynomials

Generating function for Euler
numbers:

1

0cosh( ) !t
E

t
nn

n

n
=

=

∞

∑

euler(n)

euler(n,z)

n ≥ 0

t < 
2

Exponential
integrals Ei n z

e

t
dt

zt

n
( , ) =

−∞

∫
1

Ei x PV
e
t

tx

( ) = −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−∞
∫

Ei(n,z)

Ei(x)

n ≥ 0

Real(z) > 0

Fresnel sine and
cosine integrals C x t dt

x

( ) cos= ⎛
⎝⎜

⎞
⎠⎟∫ 

2
2

0

S x t dt
x

( ) sin= ⎛
⎝⎜

⎞
⎠⎟∫ 

2
2

0

FresnelC(x)

FresnelS(x)

Gamma function
Γ( )z t e dtz t= − −

∞

∫ 1

0

GAMMA(z)

Harmonic
function h n

k
n

k

n
( ) ( )= = + +

=
∑ 1

1
1

Ψ γ
harmonic(n) n > 0
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MFUN Special Functions (Continued)

Function Name Definition mfun Name Arguments

Hyperbolic sine
and cosine
integrals

Shi z
t

t
dt

z

( )
sinh( )= ∫

0

Chi z z
t

t
dt

z

( ) ln( )
cosh( )= + + −∫γ 1

0

Shi(z)

Chi(z)

(Generalized)
hypergeometric
function F n d z

n k
n

z

d k
d

k

i

i

k

i

j

i

ii

m
k

( , , )

( )
( )

( )
( )

!

=

+ ⋅

+ ⋅

=

=

=

∞ ∏

∏
∑

Γ
Γ

Γ
Γ

1

1

0

where j and m are the number of terms
in n and d, respectively.

hypergeom(n,d,x)

where

n = [n1,n2,...]

d = [d1,d2,...]

n1,n2,... are
real.

d1,d2,...
are real and
nonnegative.

Incomplete
elliptic integrals

Legendre’s incomplete elliptic
integrals of the first, second, and third
kind.

EllipticF(x,k)

EllipticE(x,k)

EllipticPi(x,a,k)

0 < x ≤ ∞.

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Incomplete
gamma function Γ( , )a z e t dtt a

z

= ⋅− −
∞

∫ 1
GAMMA(z1,z2)

z1 = a
z2 = z

Logarithm of the
gamma function

lnGAMMA( ) ln( ( ))z z= Γ lnGAMMA(z)

Logarithmic
integral Li x PV

dt
t

Ei x
x

( )
ln

(ln )=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=∫

0

Li(x) x > 1
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MFUN Special Functions (Continued)

Function Name Definition mfun Name Arguments

Polygamma
function Ψ Ψ( ) ( ) ( )n

n
z

d
dz

z=

where Ψ( )z is the Digamma function.

Psi(n,z) n ≥ 0

Shifted sine
integral Ssi z Si z( ) ( )= − 

2

Ssi(z)

The following orthogonal polynomials are available using mfun. In all cases, n
is a nonnegative integer and x is real.

Orthogonal Polynomials

Polynomial mfun Name Arguments

Chebyshev of the first
and second kind

T(n,x)

U(n,x)

Gegenbauer G(n,a,x) a is a nonrational algebraic
expression or a rational
number greater than -1/2.

Hermite H(n,x)

Jacobi P(n,a,b,x) a, b are nonrational
algebraic expressions or
rational numbers greater
than -1.

Laguerre L(n,x)

Generalized Laguerre L(n,a,x) a is a nonrational algebraic
expression or a rational
number greater than -1.

Legendre P(n,x)
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Diffraction Example
This example is from diffraction theory in classical electrodynamics. (J.D.
Jackson, Classical Electrodynamics, John Wiley & Sons, 1962.)

Suppose you have a plane wave of intensity I0 and wave number k. Assume
that the plane wave is parallel to the xy-plane and travels along the z-axis
as shown below. This plane wave is called the incident wave. A perfectly
conducting flat diffraction screen occupies half of the xy-plane, that is x < 0.
The plane wave strikes the diffraction screen, and you observe the diffracted
wave from the line whose coordinates are (x, 0, z0), where z0 > 0.

The intensity of the diffracted wave is given by

I
I

C S= ( ) +⎛
⎝⎜

⎞
⎠⎟
+ ( ) +⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥0

2 2

2
1
2

1
2

  ,

where

 = ⋅k
z

x
2 0

,

and C( ) and S( ) are the Fresnel cosine and sine integrals:
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C t dt
( ) = ⎛
⎝⎜

⎞
⎠⎟∫ cos

0
2

2

S t dt
( ) = ⎛
⎝⎜

⎞
⎠⎟∫ sin .

2
2

0

How does the intensity of the diffracted wave behave along the line of
observation? Since k and z0 are constants independent of x, you set

k
z2

1
0
= ,

and assume an initial intensity of I0 = 1 for simplicity.

The following code generates a plot of intensity as a function of x:

x = -50:50;
C = mfun('FresnelC',x);
S = mfun('FresnelS',x);
I0 = 1;
T = (C+1/2).^2 + (S+1/2).^2;
I = (I0/2)*T;
plot(x,I);
xlabel('x');
ylabel('I(x)');
title('Intensity of Diffracted Wave');
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−50 0 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

I(
x)

Intensity of Diffracted Wave

You see from the graph that the diffraction effect is most prominent near the
edge of the diffraction screen (x = 0), as you expect.

Note that values of x that are large and positive correspond to observation
points far away from the screen. Here, you would expect the screen to have
no effect on the incident wave. That is, the intensity of the diffracted wave
should be the same as that of the incident wave. Similarly, x values that are
large and negative correspond to observation points under the screen that are
far away from the screen edge. Here, you would expect the diffracted wave to
have zero intensity. These results can be verified by setting

x = [Inf -Inf]

in the code to calculate I.
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Generating Code from Symbolic Expressions

In this section...

“Generating C or Fortran Code” on page 3-129

“Generating MATLAB Function Handles and M-Files” on page 3-130

“Generating Embedded MATLAB Function Blocks” on page 3-135

Generating C or Fortran Code
You can generate C or Fortran code fragments from a symbolic expression,
or generate files containing code fragments, using the ccode and fortran
functions. These code fragments calculate numerical values as if substituting
numbers for variables in the symbolic expression.

To generate code from a symbolic expression g, enter either ccode(g) or
fortran(g).

For example:

syms x y
z = 30*x^4/(x*y^2 + 10) - x^3*(y^2 + 1)^2;
fortran(z)

ans =
t0 = (x**4*30)/(x*y**2+10)-x**3*(y**2+1)**2

ccode(z)

ans =
t0 =

((x*x*x*x)*3.0E1)/(x*(y*y)+1.0E1)-(x*x*x)*pow(y*y+1.0,2.0);

To generate a file containing code, either enter ccode(g,'file','filename')
or fortran(g,'file','filename'). For the example above,

fortran(z, 'file', 'fortrantest')
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generates a file named fortrantest in the current directory. fortrantest
consists of the following:

t12 = x**2
t13 = y**2
t14 = t13+1
t0 = (t12**2*30)/(t13*x+10)-t12*t14**2*x

Similarly, the command

ccode(z,'file','ccodetest')

generates a file named ccodetest that consists of the lines

t16 = x*x;
t17 = y*y;
t18 = t17+1.0;
t0 = ((t16*t16)*3.0E1)/(t17*x+1.0E1)-t16*(t18*t18)*x;

ccode and fortran generate many intermediate variables. This is called
optimized code. Intermediate variables can make the resulting code more
efficient by reusing intermediate expressions (such as t12 in fortrantest,
and t16 in ccodetest). They can also make the code easier to read by keeping
expressions short.

Generating MATLAB Function Handles and M-Files
You can use matlabFunction to generate a MATLAB function handle that
calculates numerical values as if you were substituting numbers for variables
in a symbolic expression. You also can use matlabFunction to generate
an M-file for calculating these numerical values. The generated M-file is
available for use in any MATLAB calculation, whether or not the computer
running the file has a license for Symbolic Math Toolbox functions.

Symbolic Math Toolbox with a Maple engine does not support
matlabFunction. For details, see “Differences in Functionality When Using
MuPAD and Maple Engines” on page 4-43.
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Generating a Function Handle
matlabFunction can generate a function handle from any symbolic
expression. For example:

syms x y
r = sqrt(x^2 + y^2);
ht = matlabFunction(tanh(r))

ht =
@(x,y)tanh(sqrt(x.^2+y.^2))

You can use this function handle to calculate numerically:

ht(.5,.5)

ans =
0.6089

You can pass the usual MATLAB double-precision numbers or matrices to
the function handle. For example:

cc = [.5,3];
dd = [-.5,.5];
ht(cc, dd)

ans =
0.6089 0.9954

Controlling the Order of Variables
matlabFunction generates input variables in alphabetical order from a
symbolic expression. That is why the function handle in “Generating a
Function Handle” on page 3-131 has x before y:

ht = @(x,y)tanh((x.^2 + y.^2).^(1./2))

You can specify the order of input variables in the function handle using
the vars option. You specify the order by passing a cell array of strings or
symbolic arrays, or a vector of symbolic variables. For example:

syms x y z
r = sqrt(x^2 + 3*y^2 + 5*z^2);
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ht1 = matlabFunction(tanh(r), 'vars', [y x z])

ht1 =
@(y,x,z)tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))

ht2 = matlabFunction(tanh(r), 'vars', {'x', 'y', 'z'})

ht2 =
@(x,y,z)tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))

ht3 = matlabFunction(tanh(r), 'vars', {'x', [y z]})

ht3 =
@(x,in2)tanh(sqrt(x.^2+in2(:,1).^2.*3.0+in2(:,2).^2.*5.0))

Generating an M-File
You can generate an M-file from a symbolic expression, in addition to a
function handle. Specify the file name using the file option. Pass a string
containing the file name or the path to the file. If you do not specify the path
to the file, matlabFunction creates this file in the current directory.

This example generates an M-file that calculates the value of the symbolic
matrix F for double-precision inputs t, x, and y:

syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w,(1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(F,'file','testMatrix.m')

The file testMatrix.m contains the following code:

function F = testMatrix(t,x,y)
%TESTMATRIX
% F = TESTMATRIX(T,X,Y)

% This function was generated
% by the Symbolic Math Toolbox version 5.2.
% 07-Nov-2008 12:00:32

t2 = x.^2;
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t3 = tan(y);
t4 = t2.*x;
t5 = t.^2;
t6 = t5 + 1;
t7 = 1./y;
t8 = t6.*t7.*x;
t9 = t3 + t4;
t10 = 1./t9;
F = [-(t10.*(t3 - t4))./t6,t8; t8,- t10.*(3.*t3 - 3.*t2.*x) - 1];

matlabFunction generates many intermediate variables. This is called
optimized code. Intermediate variables can make the resulting code more
efficient by reusing intermediate expressions (such as t4, t6, t8, t9, and t10
in the calculation of F). Using intermediate variables can make the code easier
to read by keeping expressions short.

If you don’t want the default alphabetical order of input variables, use the
vars option to control the order. Continuing the example,

matlabFunction(F,'file','testMatrix.m','vars',[x y t])

generates a file equivalent to the previous one, with a different order of inputs:

function F = testMatrix(x,y,t)
...

Naming Output Variables
By default, the names of the output variables coincide with the names you
use calling matlabFunction. For example, if you call matlabFunction with
the variable F

syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w, (1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(F,'file','testMatrix.m','vars',[x y t])

the generated name of an output variable is also F:

function F = testMatrix(x,y,t)
...
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If you call matlabFunction using an expression instead of individual variables

syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w,(1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(w + z + F,'file','testMatrix.m',...
'vars',[x y t])

the default names of output variables consist of the word out followed by the
number, for example:

function out1 = testMatrix(x,y,t)
...

To customize the names of output variables, use the output option:

syms x y z
r = x^2 + y^2 + z^2;
q = x^2 - y^2 - z^2;
f = matlabFunction(r, q, 'file', 'new_function',...
'outputs', {'name1','name2'})

The generated function returns name1 and name2 as results:

function [name1,name2] = new_function(x,y,z)
...

Converting MuPAD Expressions
You can convert a MuPAD expression or function to a MATLAB function:

syms x y;
f = evalin(symengine, 'arcsin(x) + arccos(y)');
matlabFunction(f, 'file', 'new_function');

The created file contains the same expressions written in the MATLAB
language:

function f = new_function(x,y)
%NEW_FUNCTION
% F = NEW_FUNCTION(X,Y)
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% This function was generated by
% the Symbolic Math Toolbox version 5.2.
% 31-Oct-2008 17:41:12

f = asin(x) + acos(y);

Note matlabFunction cannot correctly convert some MuPAD expressions
to MATLAB functions. These expressions do not trigger an error message.
When converting a MuPAD expression or function that is not on the MATLAB
vs. MuPAD Expressions list, always check the results of conversion. To verify
the results, execute the resulting function.

Generating Embedded MATLAB Function Blocks
Using emlBlock, you can generate an Embedded MATLAB™ Function block.
The generated block is available for use in Simulink® models, whether or
not the computer running the simulations has a license for Symbolic Math
Toolbox functions.

Symbolic Math Toolbox with a Maple engine does not support emlBlock. For
details, see “Differences in Functionality When Using MuPAD and Maple
Engines” on page 4-43.

Generating and Editing a Block
Suppose, you want to create a model involving the van der Pol equation.
Before you can convert a symbolic expression to an Embedded MATLAB
Function block, create an empty model or open an existing one:

new_system('my_system');
open_system('my_system');

Create a symbolic expression and pass it to the emlBlock command. Also
specify the block name:

syms x y;
mu = sym('mu');
dydt = -x - mu*y*(x^2 - 1);
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emlBlock('my_system/vdp', dydt);

If you use the name of an existing block, the emlBlock command replaces the
definition of an existing block with the converted symbolic expression.

The model my_system contains the generated block.
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Add other Simulink blocks and wiring to properly define the system.
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You can open and edit the generated block. To open a block, select Edit>Open
Block or use the context menu.

Controlling the Order of Input Ports
emlBlock generates input variables and the corresponding input ports in
alphabetical order from a symbolic expression. To change the order of input
variables, use the vars option:

syms x y;
mu = sym('mu');
dydt = -x - mu*y*(x^2 - 1);
emlBlock('my_system/vdp', dydt,...
'vars', [y mu x]);

Naming the Output Ports
By default, emlBlock generates the names of the output ports as the word out
followed by the output port number, for example, out3. The output option
allows you to use the custom names of the output ports:

syms x y;
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mu = sym('mu');
dydt = -x - mu*y*(x^2 - 1);
emlBlock('my_system/vdp', dydt,...
'outputs',{'name1'});

Converting MuPAD Expressions
You can convert a MuPAD expression or function to an Embedded MATLAB
Function block:

syms x y;
f = evalin(symengine, 'arcsin(x) + arccos(y)');
emlBlock('my_system/my_block', f);

The resulting block contains the same expressions written in the MATLAB
language:

function f = my_block(x,y)
%MY_BLOCK
% F = MY_BLOCK(X,Y)

% This function was generated by
% the Symbolic Math Toolbox version 5.2.
% 31-Oct-2008 11:48:48

f = asin(x) + acos(y);

Note Some MuPAD expressions cannot be correctly converted to a block.
These expressions do not trigger an error message. When converting a
MuPAD expression or function that is not on the MATLAB vs. MuPAD
Expressions list, always check the results of conversion. To verify the results,
you can:

• Run the simulation containing the resulting block

• Open the block and verify that all the functions are defined in the
Embedded MATLAB Function Library
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Understanding MuPAD

In this section...

“Introduction to MuPAD” on page 4-2

“The MATLAB Workspace and MuPAD Engines” on page 4-2

“Introductory Example Using a MuPAD Notebook from MATLAB” on page
4-3

Introduction to MuPAD
Version 5 of Symbolic Math Toolbox is powered by the MuPAD symbolic
engine.

• Nearly all Symbolic Math Toolbox functions work the same way as in
previous versions. To read about the differences with the new engine, see
the transition Release Notes.

• MuPAD notebooks provide a new interface for performing symbolic
calculations, variable-precision calculations, plotting, and animations.
“Introductory Example Using a MuPAD Notebook from MATLAB” on page
4-3 contains an introductory example of how to use this interface.

• Symbolic Math Toolbox functions allow you to copy variables and
expressions between the MATLAB workspace and MuPAD notebooks. For
more information, see “Copying Variables and Expressions Between the
MATLAB Workspace and MuPAD Notebooks” on page 4-24.

• You can call MuPAD functions and procedures from the MATLAB
environment. For more information, see “Calling MuPAD Functions at the
MATLAB Command Line” on page 4-27.

The MATLAB Workspace and MuPAD Engines
A MuPAD engine is a separate process that runs on your computer in
addition to a MATLAB process. A MuPAD engine starts when you first call a
function that needs a symbolic engine, such as syms. Symbolic Math Toolbox
functions that use the symbolic engine use standard MATLAB syntax, such
as y = int(x^2).
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Conceptually, each MuPAD notebook has its own symbolic engine, with
associated workspace. You can have any number of MuPAD notebooks open
simultaneously.
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The engine workspace associated with the MATLAB workspace is generally
empty, except for assumptions you make about variables. For more
information, see “Clearing Assumptions and Resetting the Symbolic Engine”
on page 4-29.

Introductory Example Using a MuPAD Notebook
from MATLAB
This example shows how to use a MuPAD notebook to calculate symbolically
the mean and variance of a normal random variable that is restricted to be
positive. For more information on using a MuPAD notebook, see “Calculating
in a MuPAD Notebook” on page 4-14.

The density function of the normal and positive random variable is

f x e xx
( ) //

= >⎧
⎨
⎪

⎩⎪

− 2 2 2 0
0

 if 
otherwise.
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1 At the MATLAB command line, enter the command

mupad

2 A blank MuPAD notebook opens. You perform calculations by typing in the
input area, demarcated by a left bracket.

��'�������

3 In the input area, type

f := exp(-x^2/2)*sqrt(2/PI)

and press Enter.
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Note Assignment in a MuPAD notebook uses :=, not the MATLAB syntax
=. Also, the MuPAD syntax for the mathematical constant π is PI, not the
MATLAB syntax pi. For more information on common syntax differences,
see “Differences Between MATLAB and MuPAD Syntax” on page 4-20.

The MuPAD notebook displays results in real math notation.

Your notebook appears as follows.

4 The mean of the random variable is

mean = ⋅
∞

∫ x f dx
0

.

To calculate the mean of the random variable, type

mean :=

a To place an integral in the correct syntax, click the integral button in the
right-hand command bar, and select definite limits as shown.
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b The correct syntax for integration appears in the input area.

c Replace #f with x*f, #x with x, #a with 0, and #b with infinity.

• Use the Tab key to select the replaceable fields #f, #x, etc.

• Use Ctrl+space to autocomplete inputs; e.g., enter infi followed by
Ctrl+space to enter infinity.

Once your input area reads

mean := int(x*f, x=0..infinity)

press Enter.

Note The syntax for integration, and for infinity, differ from the MATLAB
versions.
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5 The variance of the random variable is

variance mean= −( ) ⋅
∞

∫ x f dx2

0

.

To calculate the variance of the random variable, type

variance := int((x-mean)^2*f, x=0..infinity)

and press Enter.
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6 The result of evaluating variance is a complicated expression. Try to
simplify it with the simplify command. Type

simplify(variance)

and press Enter. The result is indeed simpler.

7 Another expression for the variance of the random variable is

variance mean= ⋅ −
∞

∫ x f dx2

0

2.

To calculate the variance of the random variable using this definition, type

variance2 := int(x^2*f, x=0..infinity) - mean^2

and press Enter.

The two expressions for variance, variance and variance2, are obviously
equivalent.
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For more information on working in MuPAD notebooks, select Help > Open
Help, or press F1 to launch the MuPAD Help viewer.

Within the MuPAD Help viewer, both the “Getting Started” and “The MuPAD
Notebook Interface” sections can help you understand and use MuPAD
notebooks.
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MuPAD for MATLAB Users

In this section...

“Getting Help for MuPAD” on page 4-10

“Launching, Opening, and Saving MuPAD Notebooks” on page 4-12

“Opening Recent Files and Other MuPAD Interfaces” on page 4-13

“Calculating in a MuPAD Notebook” on page 4-14

“Differences Between MATLAB and MuPAD Syntax” on page 4-20

Getting Help for MuPAD
There is extensive online help available for MuPAD. You can access the help
browser from the MATLAB workspace in a variety of ways:

• Enter doc(symengine) at the MATLAB command line to display MuPAD
Help.
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MuPAD Help contains complete documentation of the MuPAD language. It
also explains how to use the various MuPAD interfaces, such as notebooks
and the editor.

• For help on a specific MuPAD function, enter
doc(symengine,'functionName') at the MATLAB command line to
display MuPAD Help at the functionName function.

• There is also a MuPAD Tutorial PDF file available at
http://www.mathworks.com/access/helpdesk/...
help/pdf_doc/symbolic/mupad_tutorial.pdf .

Launching, Opening, and Saving MuPAD Notebooks
To open a new MuPAD notebook from the MATLAB command line, enter

nb = mupad

(You can use any variable name you like instead of nb.) This opens a blank
MuPAD notebook.

The variable nb is a handle to the notebook. This handle is used only for
communication between the MATLAB workspace and the MuPAD notebook.
It can be used as described in “Copying Variables and Expressions Between
the MATLAB Workspace and MuPAD Notebooks” on page 4-24.

You can also open an existing MuPAD notebook file named file_name from
the MATLAB command line by entering the command

nb2 = mupad('file_name')

This command is useful in case you lose the handle to a notebook; save the
notebook file, and reopen it with a fresh handle.

Warning You can lose data when saving a MuPAD notebook. A
notebook saves its inputs and outputs, but not the state of its engine.
In particular, variables copied into a notebook using setVar(nb,...)
are not saved with the notebook.

You can open and save MuPAD notebook files using the usual file system
commands, and by using the MATLAB or MuPAD File menu. However, to

4-12

http://www.mathworks.com/access/helpdesk/help/pdf_doc/symbolic/mupad_tutorial.pdf
http://www.mathworks.com/access/helpdesk/help/pdf_doc/symbolic/mupad_tutorial.pdf


MuPAD® for MATLAB® Users

use a handle to a notebook, you must open the notebook using the mupad
command at the MATLAB command line.

Note MuPAD notebook files open in an unevaluated state; in other
words, the notebook is not synchronized with its engine when it opens.
To synchronize a notebook with its engine, choose Evaluate All from the
Notebook menu. For more information, see “Synchronizing a Notebook and
its Engine” on page 4-18.

Opening Recent Files and Other MuPAD Interfaces
If you have no MuPAD interfaces open, the command

mupadwelcome

brings up a window for launching various MuPAD interfaces.

• To access MuPAD Help, click one of the three options in the First Steps
pane.
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• To launch a file in the Open recent File list, single-click its name.

• To launch a new notebook, click the New Notebook button.

• To launch a program editor, click the New Editor button. For information
on this interface and its associated debugger, see MuPAD Help.

• To open an existing MuPAD notebook or program file, click Open File and
navigate to the file.

Alternatively, you can launch the mupadwelcome screen from the MATLAB
Start menu as pictured.

Calculating in a MuPAD Notebook

The Visual Elements of a Notebook
A MuPAD notebook has the following main components.
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• Enter commands for execution, evaluation, or plotting in input areas.

• Enter commentary in text areas.

• Use the Command Bar to help you enter commands into input areas with
the proper syntax.

• Use the Insert menu to add a text area (called Text Paragraph) or input
area (called Calculation).

• Use the Notebook menu to evaluate expressions in input areas.
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Working in a Notebook
The MuPAD notebook interface differs from the MATLAB interface. Here are
some things to keep in mind when working in a MuPAD notebook:

• Commands typed in an input area are not evaluated until you press Enter.

• You can edit the commands typed in any input area. For example, you can
change a command, correct syntax, or try different values of parameters
simply by selecting the area you wish to change and typing over it. Press
Enter to have the notebook evaluate the result.

• Results do not automatically cascade or propagate through a notebook, as
described in “Cascading Calculations” on page 4-16.

• The MATLAB method of recalling a previous command by typing an up
arrow key does not have the same effect in a MuPAD notebook. Instead,
you use arrow keys for navigation in MuPAD notebooks, similar to most
word processors.

Cascading Calculations
If you change a variable in a notebook, the changes do not automatically
propagate throughout the notebook. For example, consider the following set
of MuPAD commands.
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Now change the definition of z in the first line of the notebook from sin(x)
to cos(x) and press Enter.

Only the first line was reevaluated. Therefore y and z are no longer
synchronized; the notebook is in an inconsistent state.

To have the changes cascade to all parts of the notebook, select Notebook
> Evaluate All.

The engine evaluates all the expressions in the notebook from top to bottom,
and the notebook becomes consistent.
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Synchronizing a Notebook and its Engine
When you open a saved MuPAD notebook file, the notebook display is not
synchronized with its engine. For example, suppose you saved the notebook
pictured in the start of “Cascading Calculations” on page 4-16:
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If you open that file and immediately try to work in it, without synchronizing
the notebook with its engine, the expressions in the notebook display are
unavailable for calculations. For example, try to calculate u := (1+w)/w:

The variable w has no definition as far as the engine is concerned.

To remedy this situation, select Notebook > Evaluate All. The variable
u changes to reflect the value of w.
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Differences Between MATLAB and MuPAD Syntax
There are several differences between MATLAB and MuPAD syntax. Be
aware of which interface you are using in order to use the correct syntax:

• Use MATLAB syntax in the MATLAB workspace, except for the functions
evalin(symengine,...) and feval(symengine,...), which use MuPAD
syntax.

• Use MuPAD syntax in MuPAD notebooks.

You must define MATLAB variables before using them. However, every
expression entered in a MuPAD notebook is assumed to be a combination of
symbolic variables unless otherwise defined. This means that you have to be
especially careful when working in MuPAD notebooks, since fewer of your
typographic errors cause syntax errors.

This table lists common tasks, meaning commands or functions, and how they
differ in MATLAB and MuPAD syntax.

Common Tasks in MATLAB and MuPAD Syntax

Task MATLAB syntax MuPAD syntax

Assignment = :=

List variables whos anames(All, User)

Numerical value
of expression

double(expression) float(expression)

Suppress output ; :

Enter matrix [x11,x12,x13;
x21,x22,x23]

matrix([[x11,x12,x13],
[x21,x22,x23]])

{a,b,c} cell array set

Linear algebra
commands

Nothing extra needed linalg:: prefix, or
use(linalg)

Autocompletion Tab Ctrl-space

Equality,
inequality
comparison

==, ~= =, <>
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The next table lists the differences between MATLAB expressions and
MuPAD expressions.

MATLAB vs. MuPAD Expressions

MATLAB Expression MuPAD Expression

Inf infinity

pi PI

i I

NaN undefined

fix trunc

log ln

asin arcsin

acos arccos

atan arctan

asinh arcsinh

acosh arccosh

atanh arctanh

acsc arccsc

asec arcsec

acot arccot

acsch arccsch

asech arcsech

acoth arccoth

besselj besselJ

bessely besselY

besseli besselI

besselk besselK

lambertw lambertW

sinint Si
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MATLAB vs. MuPAD Expressions (Continued)

MATLAB Expression MuPAD Expression

cosint Ci

eulergamma EULER

conj conjugate

catalan CATALAN

laplace transform::laplace

ilaplace transform::invlaplace

ztrans transform::ztrans

iztrans transform::invztrans

The MuPAD definition of Fourier transform and inverse Fourier transform
differ from their Symbolic Math Toolbox counterparts by the sign of the
exponent:

Symbolic Math Toolbox
definition

MuPAD definition

Fourier
transform F f w f x e dxiwx[ ] = −

−∞

∞

∫( ) ( )

F = fourier(f)

F f w f x e dxiwx[ ] =
−∞

∞

∫( ) ( )

F = transform::fourier(f,x,w)

Inverse
Fourier
transform

F f x f w e dwiwx−

−∞

∞
[ ] = ∫1 1

2
( ) ( )



Finv = ifourier(f)

F f x f w e dwiwx− −

−∞

∞
[ ] = ∫1 1

2
( ) ( )



Finv = transform::invfourier(f,w,x)

The MuPAD definition of exponential integral differs from the Symbolic Math
Toolbox counterpart:
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Symbolic Math Toolbox
definition

MuPAD definition

Exponential
integral

expint(x) = –Ei(–x) =

exp( )− > =
∞

∫ t
t

dt x
x

 for 0

Ei(1, x).

Ei  for ( ) .x
e
t

dt x
tx

= <
−∞
∫ 0

Ei( , )
exp( )

.n t
xt

t
dt

n
= −∞

∫
1

The definitions of Ei extend
to the complex plane, with
a branch cut along the
negative real axis.
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Integration of MuPAD and MATLAB

In this section...

“Copying Variables and Expressions Between the MATLAB Workspace and
MuPAD Notebooks” on page 4-24

“Calling MuPAD Functions at the MATLAB Command Line” on page 4-27

“Clearing Assumptions and Resetting the Symbolic Engine” on page 4-29

Copying Variables and Expressions Between the
MATLAB Workspace and MuPAD Notebooks
You can copy a variable in a MuPAD notebook to a variable in the MATLAB
workspace using a MATLAB command. Similarly, you can copy a variable
or symbolic expression in the MATLAB workspace to a variable in a MuPAD
notebook using a MATLAB command. In order to do either assignment, you
need to know the handle to the MuPAD notebook you want to address.

The only way to assign variables between a MuPAD notebook and the
MATLAB workspace is to start the notebook using the syntax

nb = mupad;

(you can use any variable name for the handle nb) or open an existing
notebook file with

nb = mupad(file_name);

This handle is used only for communication between the MATLAB workspace
and the MuPAD notebook.

• To copy a symbolic variable in the MATLAB workspace to a variable in the
MuPAD notebook engine with the same name, enter

setVar(notebook_handle,variable)

at the MATLAB command line. For example, if nb is the handle to the
notebook and z is the variable, enter

setVar(nb,z)
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There is no indication in the MuPAD notebook that the variable z exists.
Check that it exists by entering z in an input area of the notebook, or by
entering the command anames(All, User) in the notebook.

• To assign a symbolic expression to a variable in a MuPAD notebook, enter

setVar(notebook_handle,'variable',expression)

at the MATLAB command line. For example, if nb is the handle to the
notebook, exp(x) - sin(x) is the expression, and z is the variable, enter

syms x
setVar(nb,'z',exp(x) - sin(x))

For this type of assignment, x must be a symbolic variable in the MATLAB
workspace.

Again, there is no indication in the MuPAD notebook that the variable z
exists. Check that it exists by entering z in an input area of the notebook,
or by entering the command anames(All, User) in the notebook.

• To copy a symbolic variable in a MuPAD notebook to a variable in the
MATLAB workspace, enter

MATLABvar = getVar(notebook_handle,'variable');

at the MATLAB command line. For example, if nb is the handle to the
notebook, z is the variable in the MuPAD notebook, and u is the variable
in the MATLAB workspace, enter

u = getVar(nb,'z')

The communication between the MATLAB workspace and the MuPAD
notebook takes place with the notebook’s engine. Therefore, the variable
z must be synchronized into the notebook’s MuPAD engine before using
getVar, and not merely displayed in the notebook. If you try to use getVar
to copy a variable z that is undefined in the MuPAD engine, the resulting
MATLAB variable u is empty. For more information on this topic, see
“Synchronizing a Notebook and its Engine” on page 4-18.
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Note All such copying and assignment must be done from the MATLAB
workspace, not from a MuPAD notebook.
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Copying and Pasting Using the System Clipboard
You can also copy and paste between notebooks and the MATLAB workspace
using standard editing commands. If you copy a result in a MuPAD notebook
to the system clipboard, you may get the text associated with the expression,
or a picture, depending on your operating system and application support.

For example, consider the following MuPAD expression.

Select the output with the mouse and copy it to the clipboard.
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Paste this into the MATLAB workspace. The result is text:

exp(x)/(x^2 + 1)

If you paste it into WordPad on a Windows® system, the result is a picture.

Calling MuPAD Functions at the MATLAB Command
Line
To access MuPAD functions and procedures at the MATLAB command line,
use the evalin(symengine,...) function or the feval(symengine,...)
function. These functions are designed to work like the existing MATLAB
functions evalin and feval.

evalin
For evalin, the syntax is

y = evalin(symengine,'MuPAD_Expression');

Use evalin when you want to perform computations in the MuPAD language,
while working in the MATLAB workspace. You can use evalin for any
MuPAD expression.

For example, to make a three-element symbolic vector of the sin(kx)
function, k = 1 to 3, enter

y = evalin(symengine,'sin(k*x)$k=1..3')

y =
[ sin(x), sin(2*x), sin(3*x)]
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feval
For evaluating a MuPAD function, you can also use the feval function. feval
has a different syntax than evalin, so it can be simpler to use. The syntax is

y = feval(symengine,'MuPAD_Function',x1,...,xn);

MuPAD_Function represents the name of a MuPAD function. The arguments
x1,...,xn must be symbolic variables, numbers, or strings. For example, to
find the tenth element in the Fibonacci sequence, enter

z = feval(symengine,'numlib::fibonacci',10)

z =
55

The next example compares the use of a symbolic solution of an
equation to the solution returned by the MuPAD numeric fsolve
function near the point x = 3. (For information on this function, enter
doc(symengine,'numeric::fsolve') at the MATLAB command line.)

syms x
f = sin(x^2);
solve(f)

ans =
0
0

feval(symengine, 'numeric::fsolve',f,'x=3')

ans =
x = 3.0699801238394654654386548746678

As you might expect, the answer is the numerical value of 3 . The setting
of MATLAB format does not affect the display; it is the full returned value
from the MuPAD 'numeric::fsolve' function.

Usage of evalin vs. feval
The evalin(symengine,...) function causes the MuPAD engine to evaluate
a string. Since the MuPAD engine workspace is generally empty, expressions
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returned by evalin(symengine,...) are not simplified or evaluated
according to their definitions in the MATLAB workspace.

For example:

syms x
y = x^2;
evalin(symengine, 'cos(y)')

ans =
cos(y)

The variable y is not expressed in terms of x because y is not known to the
MuPAD engine workspace.

In contrast, feval(symengine,...) can pass symbolic variables that exist
in the MATLAB workspace, and these variables are evaluated before being
processed in the MuPAD engine. For example:

syms x
y = x^2;
feval(symengine,'cos',y)

ans =
cos(x^2)

Clearing Assumptions and Resetting the Symbolic
Engine
The symbolic engine workspace associated with the MATLAB workspace is
usually empty. The MATLAB workspace keeps track of the values of symbolic
variables, and passes them to the symbolic engine for evaluation as necessary.
However, the symbolic engine workspace contains all assumptions you make
about symbolic variables, such as whether a variable is real or positive.
These assumptions can affect solutions to equations, simplifications, and
transformations, as explained in “Examples of the Effect of Assumptions”
on page 4-32.
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Note The commands

syms x
x = sym('x')
clear x

clear any existing value of x in the MATLAB workspace, but do not clear
assumptions about x in the symbolic engine workspace.

• If you make an assumption about the nature of a variable, e.g., by the
commands

syms x real

or

syms x positive

clearing the variable x from the MATLAB workspace does not clear the
assumption from the symbolic engine workspace. To clear the assumption,
enter the command

syms x clear

For more detail, see “Checking a Variable’s Assumptions” on page 4-31 and
“Examples of the Effect of Assumptions” on page 4-32.

• If you reset the symbolic engine by entering the command

reset(symengine)

or if you change symbolic engines with the symengine command, MATLAB
no longer recognizes any symbolic variables that exist in the MATLAB
workspace. Clear the variables with the clear command, or renew them
with the syms or sym commands. The symengine command is discussed in
“Choosing a Maple or MuPAD Engine” on page 4-34.

Here is an example of how the MATLAB workspace and the symbolic engine
workspace respond to a sequence of commands:
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Step Command MATLAB
workspace

MuPAD Engine
Workspace

1 syms x positive x x is positive

2 clear x empty x is positive

3 syms x x x is positive

4 syms x clear x empty

Checking a Variable’s Assumptions
To check whether a variable, say x, has any assumption in the symbolic engine
workspace associated with the MATLAB workspace, enter the command

evalin(symengine,'getprop(x)')

at the MATLAB command line.

• If the returned answer is C_, there are no assumptions about the variable.
(C_ means it can be any complex number.)

• If the returned value is anything else, there are assumptions about the
variable.

For example:

syms x real
evalin(symengine,'getprop(x)')

ans =
R_

syms z
evalin(symengine,'assume(z <> 0)')
evalin(symengine,'getprop(z)')

ans =
C_ minus {0}

syms z clear
evalin(symengine,'getprop(z)')
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ans =
C_

For more information about the basic sets that can be returned as
assumptions, enter

doc(symengine,'solvelib::BasicSet')

Examples of the Effect of Assumptions
Assumptions can change the answers that the solve function returns, and
can change the results of simplifications. The only assumptions you can make
using MATLAB commands are real or positive.

For example, consider what transpires when solving the equation x^3 = 1:

syms x
solve('x^3=1')

ans =
1

- (3^(1/2)*i)/2 - 1/2
(3^(1/2)*i)/2 - 1/2

syms x real
solve('x^3=1')

ans =
1

However, clearing x does not change the underlying assumption that x is real:

clear x
syms x
solve('x^3=1')

ans =
1

Clearing x with syms x clear clears the assumption:
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syms x clear
solve('x^3=1')

ans =
1

- (3^(1/2)*i)/2 - 1/2
(3^(1/2)*i)/2 - 1/2

Using evalin or feval, you can make a variety of assumptions about an
expression; see “Calling MuPAD Functions at the MATLAB Command Line”
on page 4-27. All such assumptions can be cleared with the command syms
x clear, as in this example:

evalin(symengine,'assume(a <> 0)');
evalin(symengine,'solve(a*x^2+b*x+c=0,x)')

ans =
{-(b - (b^2 - 4*a*c)^(1/2))/(2*a),...
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)}

syms a clear
evalin(symengine,'solve(a*x^2+b*x+c=0,x)')

ans =
piecewise([a <> 0, {-(b - (b^2 - 4*a*c)^(1/2))/(2*a),...

-(b + (b^2 - 4*a*c)^(1/2))/(2*a)}],...
[a = 0 and b <> 0, {-c/b}], [a = 0 and b = 0 and c = 0, C_],...
[a = 0 and b = 0 and c <> 0, {}])
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Using Maple and MuPAD Engines

In this section...

“Choosing a Maple or MuPAD Engine” on page 4-34

“Differences in Maple and MuPAD Syntax” on page 4-35

“Differences in Functionality When Using MuPAD and Maple Engines”
on page 4-43

Choosing a Maple or MuPAD Engine
You can use a Maple engine with Symbolic Math Toolbox software instead
of the default MuPAD engine. You must have a compatible version of Maple
software, available from Maplesoft®, installed on your computer. Contact
http://www.maplesoft.com/ to find which versions of Maple software work
with Symbolic Math Toolbox software.

To choose a Maple engine:

1 Enter

symengine

at the MATLAB command line to display the following GUI.

2 • To use a Maple engine, click theMaple button, then theMaple Location
button, and navigate to your computer’s Maple installation directory.

To determine this directory:
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a Launch or switch to Maple.

b Enter the command

kernelopts(mapledir);

at the Maple prompt.

• To use a MuPAD engine, click the MuPAD button.

3 Clear all symbolic variables if you change engines while using Symbolic
Math Toolbox software. Do this by entering the clear command, or syms
variable–list.

Caution Results may differ when computed with a Maple engine compared
to those computed with a MuPAD engine. Also, the capabilities of the engines
may differ.

Differences in Maple and MuPAD Syntax
Prior to Version 5 of Symbolic Math Toolbox, Extended Symbolic Math
Toolbox™ software supported calling the Maple engine from the MATLAB
workspace with the maple and procread functions. Symbolic Math
Toolbox software now uses the MuPAD engine by default, and uses the
evalin(symengine,...) and feval(symengine,...) functions to access the
MuPAD engine from the MATLAB workspace.

Caution Be sure to select the functions and syntax that are appropriate for
your selected symbolic engine. For example, use procread and maple with a
Maple engine; use evalin and feval with a MuPAD engine. The tables in
the remainder of this section show the differences in syntax between the
two engines.

The maple Function and MuPAD Calls
The maple function is equivalent to one of three MuPAD calls, depending
on its syntax:

4-35



4 MuPAD® in Symbolic Math Toolbox™

Maple Engine Syntax MuPAD Engine Syntax

maple(command) evalin(symengine,'command')

maple('function',arg1,arg2,...) feval(symengine, 'function',
arg1, arg2,...)

maple restart reset(symengine)

• The content of the command and function names must be in the correct
syntax, as well as the MATLAB function call. The tables in “Maple and
MuPAD Syntax” on page 4-38, “Maple and MuPAD Library Calls” on
page 4-39, and “Maple and MuPAD Constants” on page 4-42 describe the
differences between Maple and MuPAD syntax.

• The feval and evalin functions return symbolic expressions, while the
maple command returns strings or symbolic expressions, depending on the
types of the inputs.

• To convert a symbolic expressions to a string, call the char method. For
example, if x is a symbolic variable equal to z^2/cos(z), then

y = char(x)

sets y to the string 'z^2/cos(z)'.

The procread Function and evalin Calls
The procread function, used with a Maple engine, is equivalent to an
appropriate evalin(symengine,...) method for a MuPAD engine. The
evalin call should contain a command to read the code, as shown in the
table below.

The following table contains an example in both Maple and MuPAD syntax.
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Example of procread and evalin Calls

procread for Maple Engine evalin for MuPAD Engine

procread('check.src')

The check.src file contains the following code
in Maple syntax:

check := proc(A)
# check(A) computes A*inverse(A)
local X;
X := inverse(A):
evalm(A &* X);

end;

evalin(symengine,'read("check.mu")')

Note that the " in the evalin call are
double-quote characters, not two single-quote
characters.

The check.mu file contains the following code
in MuPAD syntax:

check := proc(A)
// check(A) computes A*inverse(A)
local X;

begin
X := 1/A;
A * X;

end_proc:

mhelp Calls and the doc(symengine) method
The Maple engine mhelp function displays help about Maple functions to the
command line. The equivalent MuPAD function is the doc method of the
object returned by symengine. The doc method opens MuPAD Help to the
specified function. This table shows the differences in syntax.

Maple Syntax MuPAD Syntax

mhelp int doc(symengine,'int')

mhelp convert doc(symengine,'rewrite')

The table uses the equivalence of the Maple function convert and the MuPAD
function rewrite. To find the differing syntax between the two engines, see
“Maple and MuPAD Syntax” on page 4-38 and “Maple and MuPAD Library
Calls” on page 4-39.
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Maple and MuPAD Syntax
The following table lists common tasks (meaning functions or procedures)
that have differences between Maple and MuPAD syntax. Blank entries in
the table mean the task is not explicitly supported. Optional arguments are
enclosed in angle brackets < >.

Task Maple Syntax MuPAD Syntax

Comment #comment // one-line comment
/* multi-line
comment */

Previous results %, %%, %%% %, %1, %2

Timing s:=time();
cmd1;...;cmdN;
time()-s

time(),
time(cmd1,...,cmdN)

Matrices <1,2;3,4> matrix([[1,2],[3,4]])

Appending [op(x), a, b, ...] append(x, a, b, ...)

Concatenating
lists

[op(x),op(y)] x.y, [op(x),op(y)]

i^2$i=1..5 or
seq(i^2,i=1..5)

i^2$i=1..5Sequences

seq(f, i = m..n, e) f(i) $ i = m..n step e

Types whattype(expr) type(expr),
domtype(expr)

Testing types type(expr,type) testtype(expr,type)

Operand queries op(n,expr), n >= 0 op(expr,n), n >= 0

Clearing variables x := 'x' delete x

Namespaces x[y], :- x::y

Employing
package

with use

String/name
concatenation

x || 10 x . 10
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Task Maple Syntax MuPAD Syntax

for i from 6 by 2 to
100 do body end do;

for i from 6 to 100
step 2 do body end_for

For loops

for x in obj do body;
end do

for x in obj do body;
end_for

While loops while i < 100 do i :=
i+10; end do

while i < 100 do i :=
i+10; end_while

Repeat repeat body until cond
end_repeat

If/then/else if b then x end if if b then x end_if

Trapping errors traperror(stmt) traperror(stmt, <T>,
<MaxSteps>)

Try/catch try stmt; catch
string:stmt; finally
stmt end

Procedure
definition

f:=proc(x) local n;
body; end;

f:=proc(x) local n;
begin body; end_proc;

Non-commuting
multiplication

&* (& is neutral-op)
or A . B

domain overload of *

Maple and MuPAD Library Calls
The following table lists tasks that require different library function calls in
Maple syntax and MuPAD syntax. Blank entries in the table mean the call is
not explicitly supported. Optional arguments are enclosed in angle brackets
< >.

Task Maple Syntax MuPAD Syntax

Reading data read(filename) read(filename, <Quiet>,
<Plain>)

Opening files open(name,mode) fopen(filename |
TempFile,<Read | Write |
Append>, <Bin | Text | Raw>)
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Task Maple Syntax MuPAD Syntax

Displaying results print(e1, e2, ... ) print(<Unquoted>, <NoNL>,
<KeepOrder>, <Typeset>,
object1, object2, ...)

Substituting subs(x=a,f) subs(f, x=a, <unsimplified>)

Limits limit(f, x=a, <left | right
| real | complex>)

limit(f, x=a, <Left | Right
| Real>, <Intervals>)

Mapping map(f, expr, arg1, arg2,
...)

map(expr, f, <arg1, arg2,
...>, <Unsimplified>)

Logarithms log(x) ln(x)

AiryAi(n,z) airyAi(z,n)

argument(z) arg(z)

dirac(n,x),
dirac([n1..nk],[x1..xk])

dirac(x,n)

EllipticK(z)
different norm

EllipticK(z)

EllipticPi(z,nu,k)
different norm

EllipticPi(m,phi,n)

FresnelC(x)
different norm

fresnelC(x)

GAMMA(x) gamma(x)

GAMMA(a,x) igamma(a,x)

lnGAMMA(x) lngamma(x)

Heaviside(t) heaviside(x)

JacobiAM(z,k)
different norm

jacobiAM(u,m)

Tensor[KroneckerDelta](m,n) kroneckerDelta(m,n)

Psi(n,x) psi(x,n)

Some special functions

Wrightomega(x) wrightOmega(x)
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Task Maple Syntax MuPAD Syntax

Factorials n! or factorial(n) n! or fact(n)

Integrals int(f, x = a..b) int(f, x = a..b,
<PrincipalValue>)

Taylor series taylor(f, x=a, n) taylor(f, x = x0, <order>,
<mode>, <NoWarning>)

Coefficients coeffs(p, x, 't'), coeff(p,
x, n)

coeffs(f, <vars>, <x>, n)

Simplifying basic simplify(f) Simplify(f, <Steps>),
simplify(f)

Simplifying to a target simplify(f, <symbolic>,
<assume=prop>, n1, n2, ...)

simplify(f,target), target =
cos, sin, exp, ln, sqrt, unit,
logic, condition, or relation

Simplifying special simplify[radical] radsimp

Combining combine(f, n, opt1, opt2,
...)

combine(f, <[target1,
target2, ...]>)

Rewriting convert(expr, form) rewrite(expr, func)

Collecting collect(f, x, <form>,
<func>)

collect(f, x, <f>)

Factoring factor(a, K) factor(f, <Adjoin = adjoin>,
<MaxDegree = n>)

Finding free variables
(indeterminates)

indets(expr, <typename>) freeIndets(expr)

Solving equations solve(equations, variables) solve(system, vars,
<options>)

Solving ODEs dsolve({ODE, ICs}, y(x),
options)

solve(ODE)

Solving recurrences rsolve(eqns,fcns) solve(REC)

Finding discontinuities discont(f,x) discont(f, x = a .. b,
<Undefined>)

Making assumptions assume(x,real) assume(x,R_)
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Task Maple Syntax MuPAD Syntax

Listing properties about(x) getprop(x)

Evaluating numerically evalf(expr) float(expr)

Evaluating Boolean evalb(expr) bool(expr)

Evaluating matrix evalm(a+b), evalm(x.b) a+b, a*b matrices a,b

Parsing string parse(string,options) text2expr(string)

Showing code print(f) expose(f)

Leading terms lcoeff lcoeff(p), lterm(p)

Partial fractions convert(expr, parfrac) partfrac(f)

Plotting 2-D plot(f,x=x0..x1) plot(f1,f2,..., x=x0..x1),
plotfunc2d(f1,f2,...,
x=x0..x1)

Plotting 3-D plot3d(f, x=a..b, y=c..d) plotfunc3d(f1,f2,...,
x=x0..x1, y=y0..y1)

Pseudo division Prem(p,q) pdivide(p,q)

Splitting objects selectremove split(obj,f)

Maple and MuPAD Constants
The following table lists the constants and global symbols that differ between
Maple syntax and MuPAD syntax.

Symbol Maple Syntax MuPAD Syntax

Catalan number Catalan CATALAN

Digits of precision for
floats

Digits DIGITS

Euler’s gamma
constant

gamma EULER

Library locations libname LIBPATH, READPATH,
PACKAGEPATH
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Symbol Maple Syntax MuPAD Syntax

Empty sequence NULL null()

Default number of
terms

Order ORDER

π = 3.14159... Pi PI

Three-state Boolean
logic values

True/False/FAIL TRUE/FALSE/UNKNOWN

Differences in Functionality When Using MuPAD and
Maple Engines
The following Symbolic Math Toolbox functions introduced in the toolbox
version 4.9 require that you run a MuPAD engine:

• matlabFunction, which converts a symbolic expression to a function
handle or a file

• emlBlock, which converts a symbolic expression to an Embedded MATLAB
Function block
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Function Reference

Calculus (p. 5-2) Perform calculus operations on
symbolic expressions

Linear Algebra (p. 5-2) Symbolic matrix manipulation

Simplification (p. 5-3) Modify or simplify symbolic data

Solution of Equations (p. 5-4) Solve symbolic expression

Variable Precision Arithmetic
(p. 5-4)

Computing that requires exact
control over numeric accuracy

Arithmetic Operations (p. 5-4) Perform arithmetic on symbolic
expressions

Special Functions (p. 5-5) Specific mathematical applications

MuPAD (p. 5-5) Access MuPAD

Pedagogical and Graphical
Applications (p. 5-6)

Provide more information with plots
and calculations

Conversions (p. 5-7) Convert symbolic data from one data
type to another

Basic Operations (p. 5-7) Basic operations of symbolic data

Integral and Z-Transforms (p. 5-9) Perform integral transforms and
z-transforms



5 Function Reference

Calculus
diff Differentiate symbolic expression

int Integrate symbolic expression

jacobian Compute Jacobian matrix

limit Compute limit of symbolic expression

symsum Evaluate symbolic sum of series

taylor Taylor series expansion

Linear Algebra
colspace Return basis for column space of

matrix

det Compute the determinant of
symbolic matrix

diag Create or extract diagonals of
symbolic matrices

eig Compute symbolic eigenvalues and
eigenvectors

expm Compute symbolic matrix
exponential

inv Compute symbolic matrix inverse

jordan Compute Jordan canonical form of
matrix

null Form a basis for null space of matrix

poly Compute characteristic polynomial
of matrix

rank Compute the rank of symbolic matrix

rref Compute reduced row echelon form
of matrix

5-2



Simplification

svd Compute singular value
decomposition of symbolic matrix

tril Return lower triangular part of
symbolic matrix

triu Return upper triangular part of
symbolic matrix

Simplification
coeffs List coefficients of multivariate

polynomial

collect Collect coefficients

expand Symbolic expansion of polynomials
and elementary functions

factor Factorization

horner Horner nested polynomial
representation

numden Numerator and denominator

simple Search for simplest form of symbolic
expression

simplify Symbolic simplification

subexpr Rewrite symbolic expression in
terms of common subexpressions

subs Symbolic substitution in symbolic
expression or matrix
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Solution of Equations
compose Functional composition

dsolve Symbolic solution of ordinary
differential equations

finverse Functional inverse

solve Symbolic solution of algebraic
equations

Variable Precision Arithmetic
digits Variable precision accuracy

vpa Variable precision arithmetic

Arithmetic Operations
+ Addition

- Subtraction

* Multiplication

.* Array multiplication

\ Left division

.\ Array left division

/ Right division

./ Array right division

^ Matrix or scalar raised to a power

.^ Array raised to a power
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' Complex conjugate transpose

.' Real transpose

Special Functions
cosint Cosine integral

dirac Dirac delta

heaviside Compute Heaviside step function

hypergeom Generalized hypergeometric

lambertw Lambert’s W function

mfun Numeric evaluation of special
mathematical function

mfunlist List special functions for use with
mfun

sinint Sine integral

zeta Compute the Riemann zeta function

MuPAD
clear all Remove items from the MATLAB

workspace and reset the MuPAD
engine.

doc Get help for MuPAD functions

evalin Evaluate MuPAD expressions

feval Evaluate MuPAD expressions

getVar Get variable from MuPAD notebook

mupad Start MuPAD notebook
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mupadwelcome Launch MuPAD interfaces

openmn Open MuPAD notebook

openmu Open MuPAD program file

reset Close MuPAD engine

setVar Assign variable in MuPAD notebook

symengine Choose symbolic engine

Pedagogical and Graphical Applications
ezcontour Contour plotter

ezcontourf Filled contour plotter

ezmesh 3-D mesh plotter

ezmeshc Combined mesh and contour plotter

ezplot Function plotter

ezplot3 3-D parametric curve plotter

ezpolar Polar coordinate plotter

ezsurf 3-D colored surface plotter

ezsurfc Combined surface and contour
plotter

funtool Function calculator

rsums Interactive evaluation of Riemann
sums

taylortool Taylor series calculator
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Conversions

Conversions
ccode C code representation of symbolic

expression

char Convert symbolic objects to strings

double Convert symbolic matrix toMATLAB
numeric form

emlBlock Convert symbolic expression to an
Embedded MATLAB Function block

fortran Fortran representation of symbolic
expression

int8, int16, int32, int64 Convert symbolic matrix to signed
integers

latex LaTeX representation of symbolic
expression

matlabFunction Convert symbolic expression to
function handle or file

poly2sym Polynomial coefficient vector to
symbolic polynomial

single Convert symbolic matrix to single
precision

sym2poly Symbolic-to-numeric polynomial
conversion

uint8, uint16, uint32, uint64 Convert symbolic matrix to unsigned
integers

Basic Operations
ceil Round symbolic matrix toward

positive infinity

conj Symbolic complex conjugate
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eq Perform symbolic equality test

findsym Determine variables in symbolic
expression or matrix

fix Round toward zero

floor Round symbolic matrix toward
negative infinity

frac Symbolic matrix elementwise
fractional parts

imag Imaginary part of complex number

log10 Logarithm base 10 of entries of
symbolic matrix

log2 Logarithm base 2 of entries of
symbolic matrix

mod Symbolic matrix elementwise
modulus

pretty Pretty-print symbolic expressions

quorem Symbolic matrix elementwise
quotient and remainder

real Real part of a complex symbolic
number

round Symbolic matrix elementwise round

size Symbolic matrix dimensions

sort Sort symbolic vectors or polynomials

sym Symbolic numbers, variables, and
objects

syms Shortcut for constructing symbolic
objects
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Integral and Z-Transforms

symvar Find symbolic variables in symbolic
expression or matrix

unique Find unique elements of symbolic
matrices or their numeric
approximations

Integral and Z-Transforms
fourier Fourier integral transform

ifourier Inverse Fourier integral transform

ilaplace Inverse Laplace transform

iztrans Inverse z-transform

laplace Laplace transform

ztrans z-transform
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Functions — Alphabetical
List



Arithmetic Operations

Purpose Perform arithmetic operations on symbols

Syntax A+B
A-B
A*B
A.*B
A\B
A.\B
B/A
A./B
A^B
A.^B
A'
A.'

Description + Matrix addition. A+B adds A and B. A and B must have
the same dimensions, unless one is scalar.

- Matrix subtraction. A-B subtracts B from A. A and B
must have the same dimensions, unless one is scalar.

* Matrix multiplication. A*B is the linear algebraic
product of A and B. The number of columns of A must
equal the number of rows of B, unless one is a scalar.

.* Array multiplication. A.*B is the entry-by-entry
product of A and B. A and B must have the same
dimensions, unless one is scalar.

\ Matrix left division. A\B solves the symbolic linear
equations A*X=B for X. Note that A\B is roughly
equivalent to inv(A)*B. Warning messages are
produced if X does not exist or is not unique.
Rectangular matrices A are allowed, but the equations
must be consistent; a least squares solution is not
computed.
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.\ Array left division. A.\B is the matrix with entries
B(i,j)/A(i,j). A and B must have the same
dimensions, unless one is scalar.

/ Matrix right division. B/A solves the symbolic linear
equation X*A=B for X. Note that B/A is the same as
(A.'\B.').'. Warning messages are produced if X
does not exist or is not unique. Rectangular matrices
A are allowed, but the equations must be consistent; a
least squares solution is not computed.

./ Array right division. A./B is the matrix with entries
A(i,j)/B(i,j). A and B must have the same
dimensions, unless one is scalar.

^ Matrix power. A^B raises the square matrix A to the
integer power B. If A is a scalar and B is a square
matrix, A^B raises A to the matrix power B, using
eigenvalues and eigenvectors. A^B, where A and B are
both matrices, is an error.

.^ Array power. A.^B is the matrix with entries
A(i,j)^B(i,j). A and B must have the same
dimensions, unless one is scalar.

' Matrix Hermition transpose. If A is complex, A' is the
complex conjugate transpose.

.' Array transpose. A.' is the real transpose of A. A.'
does not conjugate complex entries.

Examples The following statements

syms a b c d;
A = [a b; c d];
A*A/A
A*A-A^2

return
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[ a, b]
[ c, d]

[ 0, 0]
[ 0, 0]

The following statements

syms a11 a12 a21 a22 b1 b2;
A = [a11 a12; a21 a22];
B = [b1 b2];
X = B/A;
x1 = X(1)
x2 = X(2)

return

x1 =
(a22*b1 - a21*b2)/(a11*a22 - a12*a21)

x2 =
-(a12*b1 - a11*b2)/(a11*a22 - a12*a21)

See Also null, solve
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ccode

Purpose C code representation of symbolic expression

Syntax ccode(s)
ccode(s,'file',fileName)

Description ccode(s) returns a fragment of C that evaluates the symbolic
expression s.

ccode(s,'file',fileName) writes an “optimized” C code fragment
that evaluates the symbolic expression s to the file named fileName.
“Optimized” means intermediate variables are automatically generated
in order to simplify the code.

Examples The statements

syms x
f = taylor(log(1+x));
ccode(f)

return

t0 =

x-(x*x)*(1.0/2.0)+(x*x*x)*(1.0/3.0)-(x*x*x*x)*(1.0/4.0)+(x*x*x*x*x)*(1.0/5.0);

The statements

H = sym(hilb(3));
ccode(H)

return

H[0][0] = 1.0;
H[0][1] = 1.0/2.0;
H[0][2] = 1.0/3.0;
H[1][0] = 1.0/2.0;
H[1][1] = 1.0/3.0;
H[1][2] = 1.0/4.0;
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H[2][0] = 1.0/3.0;
H[2][1] = 1.0/4.0;
H[2][2] = 1.0/5.0;

The statements

syms x
z = exp(-exp(-x));
ccode(diff(z,3),'file','ccodetest');

return a file named ccodetest containing the following:

t2 = exp(-x);
t3 = exp(-t2);
t0 = t3*exp(x*(-2.0))*(-3.0)+t3*exp(x*(-3.0))+t2*t3;

See Also fortran, latex, matlabFunction, pretty

“Generating Code from Symbolic Expressions” on page 3-129

6-6



ceil

Purpose Round symbolic matrix toward positive infinity

Syntax Y = ceil(x)

Description Y = ceil(x) is the matrix of the smallest integers greater than or
equal to x.

Example
x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[ -2, -3, -3, -2, -1/2]

See Also round, floor, fix, frac
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char

Purpose Convert symbolic objects to strings

Syntax char(A)
char(A, d)

Description char(A) converts a symbolic scalar or a symbolic array to a string.

char(A, d) converts a symbolic scalar or array to a string. For symbolic
arrays, the second parameter specifies the form of the resulting string.
For symbolic scalars, this parameter does not affect the result. d will be
removed in a future release.

Inputs A

A symbolic scalar or a symbolic array

d

d will be removed in a future release.

A number that specifies the format of the resulting string. For
symbolic arrays:

char (A, 1) results in matrix([...])

char(A, 2) results in matrix([[...],[...]])

char(A, d) for all other values of the parameter d results in
array([1..m, 1..n, 1..p], [(1,1,1) = xxx,...,(m,n,p )
= xxx])

Examples Convert symbolic expressions to strings, and then concatenate the
strings:

syms x;
y = char(x^3 + x^2 + 2*x - 1);
name = [y, ' presents a polynomial expression']
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The result is:

name =
x^3 + x^2 + 2*x - 1 presents a polynomial expression

Convert a symbolic matrix to a string:

A = sym(hilb(3))
char(A)

The result is:

A =
[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

ans =
matrix([[1,1/2,1/3],[1/2,1/3,1/4],[1/3,1/4,1/5]])

See Also sym | double | pretty
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Purpose Remove items from the MATLAB workspace and reset the MuPAD
engine.

Syntax clear all

Description clear all clears all objects in the MATLAB workspace and closes the
MuPAD engine associated with the MATLAB workspace resetting all
its assumptions.

See Also reset

6-10



coeffs

Purpose List coefficients of multivariate polynomial

Syntax C = coeffs(p)
C = coeffs(p, x)
[C, T] = coeffs(p, x)

Description C = coeffs(p) returns the coefficients of the polynomial p with respect
to all the indeterminates of p.

C = coeffs(p, x) returns the coefficients of the polynomial p with
respect to x.

[C, T] = coeffs(p, x) returns a list of the coefficients and a list
of the terms of p. There is a one-to-one correspondence between the
coefficients and the terms of p.

Examples List the coefficients of the following single-variable polynomial:

syms x
t = 16*log(x)^2 + 19*log(x) + 11;
coeffs(t)

The result is:

ans =
[ 11, 19, 16]

List the coefficients of the following polynomial with respect to the
indeterminate sin(x):

syms a b c x
y = a + b*sin(x) + c*sin(2*x);
coeffs(y, sin(x))

The result is:
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ans =
[ a + c*sin(2*x), b]

List the coefficients of the following multivariable polynomial with
respect to all the indeterminates and with respect to the variable x only:

syms x y
z = 3*x^2*y^2 + 5*x*y^3;
coeffs(z)
coeffs(z,x)

The results are:

ans =
[ 5, 3]

ans =
[ 5*y^3, 3*y^2]

Display the list of the coefficients and the list of the terms of the
following polynomial expression:

syms x y
z = 3*x^2*y^2 + 5*x*y^3;
[c,t] = coeffs(z,y)

The results are:

c =
[ 5*x, 3*x^2]

t =
[ y^3, y^2]

See Also sym2poly
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Purpose Collect coefficients

Syntax R = collect(S)
R = collect(S,v)

Description R = collect(S) returns an array of collected polynomials for each
polynomial in the array S of polynomials.

R = collect(S,v) collects terms containing the variable v.

Examples The following statements

syms x y;
R1 = collect((exp(x)+x)*(x+2))
R2 = collect((x+y)*(x^2+y^2+1), y)
R3 = collect([(x+1)*(y+1),x+y])

return

R1 =
x^2 + (exp(x) + 2)*x + 2*exp(x)

R2 =
y^3 + x*y^2 + (x^2 + 1)*y + x*(x^2 + 1)

R3 =
[ y + x*(y + 1) + 1, x + y]

See Also expand, factor, simple, simplify, syms
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Purpose Return basis for column space of matrix

Syntax B = colspace(A)

Description B = colspace(A) returns a matrix whose columns form a basis for the
column space of A. The matrix A is symbolic or numeric.

Examples Find the basis for the column space of the following matrix:

A = sym([2,0;3,4;0,5])
B = colspace(A)

The result is:

A =
[ 2, 0]
[ 3, 4]
[ 0, 5]

B =
[ 1, 0]
[ 0, 1]
[ -15/8, 5/4]

See Also null | size
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Purpose Functional composition

Syntax compose(f,g)
compose(f,g,z)
compose(f,g,x,z)
compose(f,g,x,y,z)

Description compose(f,g) returns f(g(y)) where f = f(x) and g = g(y). Here x
is the symbolic variable of f as defined by symvar and y is the symbolic
variable of g as defined by symvar.

compose(f,g,z) returns f(g(z)) where f = f(x), g = g(y), and x
and y are the symbolic variables of f and g as defined by symvar.

compose(f,g,x,z) returns f(g(z)) and makes x the independent
variable for f. That is, if f = cos(x/t), then compose(f,g,x,z)
returns cos(g(z)/t)whereas compose(f,g,t,z) returns cos(x/g(z)).

compose(f,g,x,y,z) returns f(g(z)) and makes x the independent
variable for f and y the independent variable for g. For f = cos(x/t)
and g = sin(y/u), compose(f,g,x,y,z) returns cos(sin(z/u)/t)
whereas compose(f,g,x,u,z) returns cos(sin(y/z)/t).

Examples Suppose

syms x y z t u;
f = 1/(1 + x^2); g = sin(y); h = x^t; p = exp(-y/u);

Then

a = compose(f,g)
b = compose(f,g,t)
c = compose(h,g,x,z)
d = compose(h,g,t,z)
e = compose(h,p,x,y,z)
f = compose(h,p,t,u,z)

returns:
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a =
1/(sin(y)^2 + 1)

b =
1/(sin(t)^2 + 1)

c =
sin(z)^t

d =
x^sin(z)

e =
(1/exp(z/u))^t

f =
x^(1/exp(y/z))

See Also finverse, subs, syms
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Purpose Symbolic complex conjugate

Syntax conj(X)

Description conj(X) is the complex conjugate of X.

For a complex X, conj(X) = real(X) - i*imag(X).

See Also real, imag
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Purpose Cosine integral

Syntax Y = cosint(X)

Description Y = cosint(X) evaluates the cosine integral function at the elements of
X, a numeric matrix, or a symbolic matrix. The cosine integral function
is defined by

Ci x x
t
t

dt
x

( ) ln( )
cos

,= + + −∫
1

0

where  is Euler’s constant 0.577215664...

Examples Compute cosine integral for a numerical value:

cosint(7.2)

The result is:

0.0960

Compute the cosine integral for [0:0.1:1] :

cosint([0:0.1:1])

The result is:

Columns 1 through 6

-Inf -1.7279 -1.0422 -0.6492 -0.3788 -0.1778

Columns 7 through 11

-0.0223 0.1005 0.1983 0.2761 0.3374

The statements
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syms x;
f = cosint(x);
diff(f)

return

cos(x)/x

See Also sinint
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Purpose Compute the determinant of symbolic matrix

Syntax r = det(A)

Description r = det(A) computes the determinant of A, where A is a symbolic or
numeric matrix. det(A) returns a symbolic expression for a symbolic A
and a numeric value for a numeric A.

Examples Compute the determinant of the following symbolic matrix:

syms a b c d;
det([a, b; c, d])

The result is:

ans =
a*d - b*c

Compute the determinant of the following matrix containing the
symbolic numbers:

A = sym([2/3 1/3; 1 1])
r = det(A)

The result is:

A =
[ 2/3, 1/3]
[ 1, 1]

r =
1/3

See Also rank | eig
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Purpose Create or extract diagonals of symbolic matrices

Syntax diag(A, k)
diag(A)

Description diag(A, k) returns a square symbolic matrix of order n + abs(k),
with the elements of A on the k-th diagonal. A must present a row
or column vector with n components. The value k = 0 signifies the
main diagonal. The value k > 0 signifies the k-th diagonal above the
main diagonal. The value k < 0 signifies the k-th diagonal below the
main diagonal. If A is a square symbolic matrix, diag(A, k) returns a
column vector formed from the elements of the k-th diagonal of A.

diag(A), where A is a vector with n components, returns an n-by-n
diagonal matrix having A as its main diagonal. If A is a square symbolic
matrix, diag(A) returns the main diagonal of A.

Examples Create a symbolic matrix with the main diagonal presented by the
elements of the vector v:

syms a b c;
v = [a b c];
diag(v)

The result is:

ans =
[ a, 0, 0]
[ 0, b, 0]
[ 0, 0, c]

Create a symbolic matrix with the second diagonal below the main one
presented by the elements of the vector v:

syms a b c;
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v = [a b c];
diag(v, -2)

The result is:

ans =
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ a, 0, 0, 0, 0]
[ 0, b, 0, 0, 0]
[ 0, 0, c, 0, 0]

Extract the main diagonal from a square matrix:

syms a b c x y z;
A = [a, b, c; 1, 2, 3; x, y, z];
diag(A)

The result is

ans =
a
2
z

Extract the first diagonal above the main one:

syms a b c x y z;
A = [a, b, c; 1, 2, 3; x, y, z];
diag(A, 1)

The result is:

ans =
b
3
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See Also tril | triu
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Purpose Differentiate symbolic expression

Syntax diff(expr)
diff(expr, v)
diff(expr, sym('v'))
diff(expr, n)
diff(expr, v, n)
diff(expr, n, v)

Description diff(expr) differentiates a symbolic expression expr with respect to
its free variable as determined by symvar.

diff(expr, v) and diff(expr, sym('v')) differentiate expr with
respect to v.

diff(expr, n) differentiates expr n times. n is a positive integer.

diff(expr, v, n) and diff(expr, n, v) differentiate expr with
respect to v n times.

Examples Differentiate the following single-variable expression one time:

syms x;
diff(sin(x^2))

The result is

ans =
2*x*cos(x^2)

Differentiate the following single-variable expression six times:

syms t;
diff(t^6,6)

The result is
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ans =
720

Differentiate the following expression with respect to t:

syms x t;
diff(sin(x*t^2), t)

The result is

ans =
2*t*x*cos(t^2*x)

See Also int | jacobian | symvar
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Purpose Variable precision accuracy

Syntax digits
digits(d)
d = digits

Description digits specifies the number of significant decimal digits that MuPAD
software uses to do variable precision arithmetic (VPA). The default
value is 32 digits.

digits(d) sets the current VPA accuracy to d digits.

d = digits returns the current VPA accuracy.

Examples If

z = 1.0e-16
x = 1.0e+2
digits(14)

then

y = vpa(x*z+1)

uses 14-digit decimal arithmetic and returns

y =
1.0

Whereas

digits(15)
y = vpa(x*z+1)

used 15-digit decimal arithmetic and returns

y =
1.00000000000001
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See Also double, vpa
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Purpose Dirac delta

Syntax dirac(x)

Description dirac(x) returns the Dirac delta function of x.

The Dirac delta function, dirac, has the value 0 for all x not equal to 0
and the value Inf for x = 0. Several Symbolic Math Toolbox functions
return answers in terms of dirac.

Example dirac has the property that

dirac x a f x f a( ) * ( ) ( )− =
−∞

∞

∫

for any function f and real number a. For example:

syms x a
a = 5;
int(dirac(x-a)*sin(x),-inf, inf)

ans =
sin(5)

dirac also has the following relationship to the function heaviside:

syms x;
diff(heaviside(x),x)

ans =
dirac(x)

See Also heaviside
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Purpose Get help for MuPAD functions

Syntax doc(symengine)
doc(symengine,'MuPAD_function_name')

Description doc(symengine) brings up the MuPAD help browser.

doc(symengine,'MuPAD_function_name') brings up the MuPAD help
browser at the definition of MuPAD_function_name.

Example doc(symengine,'simplify') brings up the following window.
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See Also “Getting Help for MuPAD” on page 4-10
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Purpose Convert symbolic matrix to MATLAB numeric form

Syntax r = double(S)

Description r = double(S) converts the symbolic object S to a numeric object.
If S is a symbolic constant or constant expression, double returns
a double-precision floating-point number representing the value of
S. If S is a symbolic matrix whose entries are constants or constant
expressions, double returns a matrix of double precision floating-point
numbers representing the values of S’s entries.

Examples Find the numeric value for the expression
1 5

2
+

:

double(sym('(1+sqrt(5))/2')))

The result is:

1.6180

The following statements

a = sym(2*sqrt(2));
b = sym((1-sqrt(3))^2);
T = [a, b];
double(T)

return

ans =
2.8284 0.5359

See Also sym, vpa
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Purpose Symbolic solution of ordinary differential equations

Syntax dsolve('eq1','eq2',...,'cond1','cond2',...,'v')
dsolve(...,'IgnoreAnalyticConstraints',value)

Description dsolve('eq1','eq2',...,'cond1','cond2',...,'v') symbolically
solves the ordinary differential equations eq1, eq2,... using v as
the independent variable. Here cond1,cond2,... specify boundary
or initial conditions or both. You also can use the following syntax:
dsolve('eq1, eq2',...,'cond1,cond2',...,'v'). The default
independent variable is t.

The letter D denotes differentiation with respect to the independent
variable. The primary default is d/dx. The letter D followed by a
digit denotes repeated differentiation. For example, D2 is d2/dx2.
Any character immediately following a differentiation operator is a
dependent variable. For example, D3y denotes the third derivative of
y(x) or y(t).

You can specify initial and boundary conditions by equations like y(a)
= b or Dy(a) = b, where y is a dependent variable and a and b are
constants. If the number of the specified initial conditions is less than
the number of dependent variables, the resulting solutions contain the
arbitrary constants C1, C2,....

You can input each equation or a condition as a separate symbolic
equation. The dsolve command accepts up to 12 input arguments.

dsolve can produce the following three types of outputs:

• For one equation and one output, dsolve returns the resulting
solution with multiple solutions to a nonlinear equation in a symbolic
vector.

• For several equations and an equal number of outputs, dsolve sorts
the results alphabetically and assigns them to the outputs.

• For several equations and a single output, dsolve returns a structure
containing the solutions.

6-32



dsolve

If dsolve cannot find a closed-form (explicit) solution, it attempts to
find an implicit solution. When dsolve returns an implicit solution, it
issues a warning. If dsolve cannot find either an explicit or an implicit
solution, then it issues a warning and returns the empty sym. In such
a case, you can find a numeric solution, using the MATLAB ode23 or
ode45 functions. In some cases involving nonlinear equations, the
output is an equivalent lower order differential equation or an integral.

dsolve(...,'IgnoreAnalyticConstraints',value) accepts the
following values:

• value = 'all' applies the purely algebraic simplifications to the
expressions on both sides of equations. These simplifications might
not be generally valid. The default value of this option is all.

• value = 'none' solves ordinary differential equations without
additional assumptions. The results obtained with this option are
correct for all values of the arguments.

Note By default, the solver does not guarantee general correctness
and completeness of the results. If you do not set the option
IgnoreAnalyticConstraints to none, always verify results returned
by the dsolve command.

If you do not set the value of the option IgnoreAnalyticConstraints
to none, the solver applies the following rules to the expressions on
both sides of an equation:

• The solutions of polynomial equations must be complete.

• ln( ) ln( ) ln( )a b a b+ = ⋅ for all values of a and b . In particular, the
following equality is valid for all values of a , b , and c :

a b a bc c c⋅( ) = ⋅
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• ln lna b ab( ) = ⋅ for all values of a and b . In particular, the following
equality is valid for all values of a , b , and c :

a ab c b c( ) = ⋅

• The following equality is valid for all values of x :

- ln e xx( ) =
- arcsin sin x x( )( ) = , arccos cos x x( )( ) = , arctan tan x x( )( ) =

- arcsinh sinh x =x( )( ) , arccosh cosh x =x( )( ) , arctanh tanh x =x( )( )

- W x e xk
x⋅( ) = for all values of k

• The solver can multiply both sides of an equation by any expression
except 0.

Examples Solving Ordinary Differential Equations Symbolically

dsolve('Dx = -a*x')

ans =
C2/exp(a*t)

Specifying the Dependent Variable

The following differential equation presents f as a dependent variable:

dsolve('Df = f + sin(t)')

ans =
C4*exp(t) - sin(t)/2 - cos(t)/2
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Specifying the Independent Variable

dsolve('(Dy)^2 + y^2 = 1','s')

ans =

1

-1

(4*tan(C11/4 + s/4)*(tan(C11/4 + s/4)^2 - 1))/(tan(C11/4 + s/4)^2 + 1)^2

(4*tan(C7/4 - s/4)*(tan(C7/4 - s/4)^2 - 1))/(tan(C7/4 - s/4)^2 + 1)^2

Setting Initial and Boundary Conditions

dsolve('Dy = a*y', 'y(0) = b')

ans =
b*exp(a*t)

dsolve('D2y = -a^2*y', 'y(0) = 1', 'Dy(pi/a) = 0')

ans =
exp(a*i*t)/2 + 1/(2*exp(a*i*t))

Solving a System of Differential Equations

z = dsolve('Dx = y', 'Dy = -x')

z =
x: [1x1 sym]
y: [1x1 sym]

Enter z.x and z.y to see the results:

z.x

ans =
C20*cos(t) + C19*sin(t)

z.y
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ans =
C19*cos(t) - C20*sin(t)

Using the IgnoreAnalyticConstraints Option

By default, the solver applies the set of purely algebraic simplifications
that are not correct in general, but that can result in simple and
practical solutions:

y = dsolve('Dy=1+y^2','y(0)=1')

y =
tan(pi/4 + t)

To obtain complete and generally correct solutions, set the value of the
option IgnoreAnalyticConstraints to none:

y = dsolve('Dy=1+y^2','y(0)=1',...
'IgnoreAnalyticConstraints','none')

y =
piecewise([C29 in Z_, tan(pi/4 + t + pi*C29)])

The algebraic simplifications also allow you to obtain solutions for
the equations that the solver cannot compute when it uses strict
mathematical rules:

dsolve('Dv=19.6-0.00196*v^2','v(0)=0')

ans =
-(100/exp((49*t)/125) - 100)/(1/exp((49*t)/125) + 1)

versus

dsolve('Dv=19.6-0.00196*v^2','v(0)=0',...
'IgnoreAnalyticConstraints','none')

Warning: Explicit solution could not be found.
> In dsolve at 104
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ans =
[ empty sym ]

Diagnostics If dsolve cannot find an analytic solution for an equation, it prints
the warning:

Warning: Explicit solution could not be found.

and returns an empty sym object.

See Also syms
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Purpose Compute symbolic eigenvalues and eigenvectors

Syntax lambda = eig(A)
[V,D] = eig(A)
[V,D,P] = eig(A)
lambda = eig(vpa(A))
[V,D] = eig(vpa(A))

Description lambda = eig(A) returns a symbolic vector containing the eigenvalues
of the square symbolic matrix A.

[V,D] = eig(A) returns matrices V and D. The columns of V present
eigenvectors of A. The diagonal matrix D contains eigenvalues. If the
resulting V has the same size as A, the matrix A has a full set of linearly
independent eigenvectors that satisfy A*V = V*D.

[V,D,P] = eig(A) returns a vector of indices P. The length of P equals
to the total number of linearly independent eigenvectors, so that A*V
= V*D(P,P).

lambda = eig(vpa(A)) returns numeric eigenvalues using variable
precision arithmetic.

[V,D] = eig(vpa(A)) returns numeric eigenvectors using variable
precision arithmetic. If A does not have a full set of eigenvectors, the
columns of V are not linearly independent.

Examples Compute the eigenvalues for the magic square of order 5:

M = sym(magic(5));
eig(M)

The result is:

ans =
65

(625/2 - (5*3145^(1/2))/2)^(1/2)
((5*3145^(1/2))/2 + 625/2)^(1/2)
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-(625/2 - 5/2*3145^(1/2))^(1/2)
-(5/2*3145^(1/2) + 625/2)^(1/2)

Compute the eigenvalues for the magic square of order 5 using variable
precision arithmetic:

M = sym(magic(5));
eig(vpa(M))

The result is:

ans =
65.0

21.27676547147379553062642669797423
13.12628093070921880252564308594914
-13.126280930709218802525643085949
-21.276765471473795530626426697974

Compute the eigenvalues and eigenvectors for one of the MATLAB test
matrices:

A = sym(gallery(5))
[v, lambda] = eig(A)

The results are:

A =
[ -9, 11, -21, 63, -252]
[ 70, -69, 141, -421, 1684]
[ -575, 575, -1149, 3451, -13801]
[ 3891, -3891, 7782, -23345, 93365]
[ 1024, -1024, 2048, -6144, 24572]

v =
0

21/256
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-71/128
973/256

1

lambda =
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]

See Also jordan | poly | svd | vpa
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Purpose Convert symbolic expression to an Embedded MATLAB Function block

Syntax emlBlock(block, f)
emlBlock(block, f1, f2, ...)
emlBlock(block, f1, f2, ..., param1, value1,...)

Description emlBlock(block, f) converts the symbolic expression f to an
Embedded MATLAB Function block that you can use in Simulink
models. The parameter block specifies the name of the block you create
or modify. The block should be a string.

emlBlock(block, f1, f2, ...) converts a list of the symbolic
expressions f1, f2, ... to an Embedded MATLAB Function block with
multiple outputs.

emlBlock(block, f1, f2, ..., param1, value1,...) converts a
list of the symbolic expressions f1, f2, ... to an Embedded MATLAB
Function block with multiple outputs, with the following options for
parameter/value pairs:

• Parameter = 'functionName' allows you to set the name of the
function. value should be a string. By default, value coincides with
the name of the block.

• Parameter = 'outputs' allows you to set the names of the output
ports. value should be a cell array of strings. The number of value
entries should equal or exceed the number of free variables in the
symbolic expression f. The default name of an output port consists of
the word out followed by the output port number, for example, out3.

• Parameter = 'vars' allows you to set the order of the variables
and the corresponding input ports of a block. The default order
is alphabetical. value should be either a cell array of strings or
symbolic arrays, or a vector of symbolic variables. The number of
value entries should equal or exceed the number of free variables in
the symbolic expression f.
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Note To convert a MuPAD expression or function to
an Embedded MATLAB Function block, use f =
evalin(symengine,'MuPAD_Expression') or f = feval(symengine,
'MuPAD_Function',x1,...,xn). emlBlock cannot correctly convert
some MuPAD expressions to a block. These expressions do not trigger
an error message. When converting a MuPAD expression or function
that is not on the MATLAB vs. MuPAD Expressions list, always check
the results of conversion. To verify the results, you can:

• Run the simulation containing the resulting block.

• Open the block and verify that all the functions are defined in the
Embedded MATLAB Function Library.

Symbolic Math Toolbox with a Maple engine does not support emlBlock.
For details, see “Differences in Functionality When Using MuPAD and
Maple Engines” on page 4-43.

Examples Before you can convert a symbolic expression to an Embedded MATLAB
Function block, create an empty model or open an existing one:

new_system('new_system');
open_system('new_system');

Use emlBlock to create the block new_block containing the symbolic
expression:

syms x y z
f = x^2 + y^2 +z^2;
emlBlock('new_system/new_block',f);
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If you use the name of an existing block, the emlBlock command
replaces the definition of an existing block with the converted symbolic
expression.

You can open and edit the resulting block:

function out1 = new_block(x,y,z)
%NEW_BLOCK
% OUT1 = NEW_BLOCK(X,Y,Z)

% This function was generated by
% the Symbolic Math Toolbox version 5.2.
% 31-Oct-2008 11:47:28

out1 = x.^2 + y.^2 + z.^2;

The following example generates a block and sets the function name to
new_function:

emlBlock('new_system/new_block', x, y, z,...
'functionName', 'new_function')

You can change the order of the input ports:

emlBlock('new_system/new_block', x, y, z,...
'vars', [y z x])

Also, you can rename the output variables and the corresponding ports:

emlBlock('new_system/new_block', x, y, z,...
'outputs',{'name1','name2','name3'})

emlBlock accepts several options simultaneously:

emlBlock('new_system/new_block', x, y, z,...
'functionName', 'new_function','vars', [y z x],...
'outputs',{'name1','name2','name3'})

You also can convert MuPAD expressions:
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syms x y;
f = evalin(symengine, 'arcsin(x) + arccos(y)');
emlBlock('new_system/new_block', f);

The resulting block contains the same expressions written in the
MATLAB language:

function out1 = new_block(x,y)
%NEW_BLOCK
% OUT1 = NEW_BLOCK(X,Y)

% This function was generated by
% the Symbolic Math Toolbox version 5.2.
% 31-Oct-2008 11:48:48

out1 = asin(x) + acos(y);

See Also ccode, fortran, matlabFunction, subs, sym2poly

“Generating Code from Symbolic Expressions” on page 3-129
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Purpose Perform symbolic equality test

Syntax eq(A, B)
A == B

Description eq(A, B) compares each element of A for equality with the
corresponding element of B. If the elements are not equal or if either
element is undefined, the test fails. eq does not expand or simplify
expressions before making the comparison.

A == B is the alternate syntax for eq(A, B).

Examples Check equality of two symbolic matrices:

A = sym(hilb(10));
B = sym([1/11 1/12 1/13 1/14 1/15 1/16]);
eq(A(9, 3:8), B)

The result is:

ans =
1 1 1 1 1 1

Check the trigonometric identity:

syms x;
sin(x)^2 + cos(x)^2 == 1

The symbolic equality test might fail to recognize mathematical
equivalence of polynomial or trigonometric expressions because it does
not simplify or expand them. The result is:

ans =
0
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When testing mathematical equivalence of such expressions, simplify
the difference between the expressions, and then compare the result
with 0:

syms x;
simplify(sin(x)^2 + cos(x)^2 - 1) == 0

The result is:

ans =
1

See Also simplify
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Purpose Evaluate MuPAD expressions

Syntax result = evalin(symengine,'MuPAD_expression')
[result,status] = evalin(symengine,'MuPAD_expression')

Description result = evalin(symengine,'MuPAD_expression') evaluates the
MuPAD expression MuPAD_expression, and returns result as a
symbolic object.

[result,status] = evalin(symengine,'MuPAD_expression')
returns the error status in status and the error message in result
if status is nonzero. If status is 0, result is a symbolic object;
otherwise, it is a string.

Example
evalin(symengine,'polylib::discrim(a*x^2+b*x+c,x)')

ans =
b^2 - 4*a*c

See Also doc, feval

“Calling MuPAD Functions at the MATLAB Command Line” on page
4-27

6-47



expm

Purpose Compute symbolic matrix exponential

Syntax expm(A)

Description expm(A) computes the matrix exponential of the symbolic matrix A.

Examples Compute the matrix exponential for the following matrix and simplify
the result:

syms t;
A = [0 1; -1 0];
simplify(expm(t*A))

The result is:

ans =
[ cos(t), sin(t)]
[ -sin(t), cos(t)]

See Also eig
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Purpose Symbolic expansion of polynomials and elementary functions

Syntax expand(S)

Description expand(S) writes each element of a symbolic expression S as a product
of its factors. expand is often used with polynomials. It also expands
trigonometric, exponential, and logarithmic functions.

Examples Expand the expression:

syms x;
expand((x-2)*(x-4))

The result is:

ans =
x^2 - 6*x + 8

Expand the trigonometric expression:

syms x y;
expand(cos(x+y))

The result is:

ans =
cos(x)*cos(y) - sin(x)*sin(y)

Expand the exponent:

syms a b;
expand(exp((a+b)^2))

The result is:

ans =
exp(2*a*b)*exp(a^2)*exp(b^2)
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Expand the expressions that form a vector:

syms t;
expand([sin(2*t), cos(2*t)])

The result is:

ans =
[ 2*cos(t)*sin(t), cos(t)^2 - sin(t)^2]

See Also collect, factor, horner, simple, simplify, syms
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Purpose Contour plotter

Syntax ezcontour(f)
ezcontour(f,domain)
ezcontour(...,n)

Description ezcontour(f) plots the contour lines of f(x,y), where f is a symbolic
expression that represents a mathematical function of two variables,
such as x and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezcontour(u^2 - v^3,[0,1],[3,6]) plots the
contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

ezcontour(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezcontour automatically adds a title and axis labels.

Examples The following mathematical expression defines a function of two
variables, x and y.

f x y x e
x

x y e ex y x y x( , ) ( ) ( ) (= − − − −⎛
⎝⎜

⎞
⎠⎟

−− − + − − − +3 1 10
5

1
3

2 2 1 2 3 5 2 2 1)) .
2 2−y

ezcontour requires a sym argument that expresses this function using
MATLAB syntax to represent exponents, natural logs, etc. This function
is represented by the symbolic expression
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syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2) ...

- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ...
- 1/3*exp(-(x+1)^2 - y^2);

For convenience, this expression is written on three lines.

Pass the sym f to ezcontour along with a domain ranging from -3 to 3
and specify a computational grid of 49-by-49.

ezcontour(f,[-3,3],49)

In this particular case, the title is too long to fit at the top of the graph
so MATLAB abbreviates the string.

See Also contour, ezcontourf, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar,
ezsurf, ezsurfc
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Purpose Filled contour plotter

Syntax ezcontour(f)
ezcontour(f,domain)
ezcontourf(...,n)

Description ezcontour(f) plots the contour lines of f(x,y), where f is a sym that
represents a mathematical function of two variables, such as x and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezcontourf(u^2 - v^3,[0,1],[3,6]) plots the
contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

ezcontourf(...,n) plots f over the default domain using an n-by-n
grid. The default value for n is 60.

ezcontourf automatically adds a title and axis labels.

Examples The following mathematical expression defines a function of two
variables, x and y.

f x y x e
x

x y e ex y x y x( , ) ( ) ( ) (= − − − −⎛
⎝⎜

⎞
⎠⎟

−− − + − − − +3 1 10
5

1
3

2 2 1 2 3 5 2 2 1)) .
2 2−y

ezcontourf requires a sym argument that expresses this function
using MATLAB syntax to represent exponents, natural logs, etc. This
function is represented by the symbolic expression
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syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2) ...

- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ...
- 1/3*exp(-(x+1)^2 - y^2);

For convenience, this expression is written on three lines.

Pass the sym f to ezcontourf along with a domain ranging from -3 to
3 and specify a grid of 49-by-49.

ezcontourf(f,[-3,3],49)

In this particular case, the title is too long to fit at the top of the graph
so MATLAB abbreviates the string.

See Also contourf, ezcontour, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar,
ezsurf, ezsurfc
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Purpose 3-D mesh plotter

Syntax ezmesh(f)
ezmesh(f, domain)
ezmesh(x,y,z)
ezmesh(x,y,z,[smin,smax,tmin,tmax])
ezmesh(x,y,z,[min,max])
ezmesh(...,n)
ezmesh(...,'circ')

Description ezmesh(f) creates a graph of f(x,y), where f is a symbolic expression
that represents a mathematical function of two variables, such as x
and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezmesh(f, domain) plots f over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min,
max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezmesh(u^2 - v^3,[0,1],[3,6]) plots u2 - v3

over 0 < u < 1, 3 < v < 6.

ezmesh(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z =
z(s,t) over the square –2π < s < 2π, –2π < t < 2π.

ezmesh(x,y,z,[smin,smax,tmin,tmax]) or
ezmesh(x,y,z,[min,max]) plots the parametric surface using the
specified domain.

ezmesh(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezmesh(...,'circ') plots f over a disk centered on the domain.
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Examples This example visualizes the function,

f x y xe x y( , ) ,= − −2 2

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a
uniform blue color by setting the colormap to a single color.

syms x y
ezmesh(x*exp(-x^2-y^2),[-2.5,2.5],40)
colormap([0 0 1])

See Also ezcontour, ezcontourf, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf,
ezsurfc, mesh
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Purpose Combined mesh and contour plotter

Syntax ezmeshc(f)
ezmeshc(f,domain)
ezmeshc(x,y,z)
ezmeshc(x,y,z,[smin,smax,tmin,tmax])
ezmeshc(x,y,z,[min,max])
ezmeshc(...,n)
ezmeshc(...,'circ')

Description ezmeshc(f) creates a graph of f(x,y), where f is a symbolic expression
that represents a mathematical function of two variables, such as x
and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezmeshc(f,domain) plots f over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min,
max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezmeshc(u^2 - v^3,[0,1],[3,6]) plots u2 – v3

over 0 < u < 1, 3 < v < 6.

ezmeshc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z
= z(s,t) over the square –2π < s < 2π, –2π < t < 2π.

ezmeshc(x,y,z,[smin,smax,tmin,tmax]) or
ezmeshc(x,y,z,[min,max]) plots the parametric surface using the
specified domain.

ezmeshc(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezmeshc(...,'circ') plots f over a disk centered on the domain.
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Examples Create a mesh/contour graph of the expression,

f x y
y

x y
( , ) ,=

+ +1 2 2

over the domain –5 < x < 5, –2π < y < 2π.

syms x y
ezmeshc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi])

Use the mouse to rotate the axes to better observe the contour lines
(this picture uses a view of azimuth = –65 and elevation = 26).

See Also ezcontour, ezcontourf, ezmesh, ezplot, ezplot3, ezpolar, ezsurf,
ezsurfc, meshc
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Purpose Function plotter

Syntax ezplot(f)
ezplot(f,[xmin xmax])
ezplot(f,[xmin xmax], fign)
ezplot(f,[xmin, xmax, ymin, ymax])
ezplot(x,y)
ezplot(x,y,[tmin,tmax])
ezplot(...,figure)

Description ezplot(f) plots the expression f = f(x) over the default domain
–2π < x < 2π.

ezplot(f,[xmin xmax]) plots f = f(x) over the specified domain. It
opens and displays the result in a window labeled Figure No. 1. If
any plot windows are already open, ezplot displays the result in the
highest numbered window.

ezplot(f,[xmin xmax], fign) opens (if necessary) and displays the
plot in the window labeled fign.

For implicitly defined functions, f = f(x,y).

ezplot(f) plots f(x,y) = 0 over the default domain –2π < x < 2π,
–2π < y < 2π.

ezplot(f,[xmin, xmax, ymin, ymax]) plots f(x,y) = 0 over xmin < x <
xmax and ymin < y < ymax.

ezplot(f,[min,max])plots f(x,y) = 0 over min < x < max and min < y <
max.

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezplot(u^2 - v^2 - 1,[-3,2,-2,3]) plots
u2 – v2 – 1 = 0 over –3 < u < 2, –2 < v < 3.

ezplot(x,y) plots the parametrically defined planar curve x = x(t) and
y = y(t) over the default domain 0 < t < 2π.
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ezplot(x,y,[tmin,tmax]) plots x = x(t) and y = y(t) over tmin < t
< tmax.

ezplot(...,figure) plots the given function over the specified domain
in the figure window identified by the handle figure.

Algorithm If you do not specify a plot range, ezplot samples the function between
-2*pi and 2*pi and selects a subinterval where the variation is
significant as the plot domain. For the range, ezplot omits extreme
values associated with singularities.

Examples This example plots the implicitly defined function,

x2 - y4 = 0

over the domain [–2π, 2π].

syms x y
ezplot(x^2-y^4)
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The following statements

syms x
ezplot(erf(x))
grid

plot a graph of the error function.
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See Also ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot3, ezpolar, ezsurf,
ezsurfc, plot
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Purpose 3-D parametric curve plotter

Syntax ezplot3(x,y,z)
ezplot3(x,y,z,[tmin,tmax])
ezplot3(...,'animate')

Description ezplot3(x,y,z) plots the spatial curve x = x(t), y = y(t), and z = z(t)
over the default domain 0 < t < 2π.

ezplot3(x,y,z,[tmin,tmax]) plots the curve x = x(t), y = y(t), and z =
z(t) over the domain tmin < t < tmax.

ezplot3(...,'animate') produces an animated trace of the spatial
curve.

Examples This example plots the parametric curve, x = sin(t), y = cos(t), z = t over
the domain [0, 6π].

syms t;
ezplot3(sin(t), cos(t), t,[0,6*pi])
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See Also ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot, ezpolar, ezsurf,
ezsurfc, plot3
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Purpose Polar coordinate plotter

Syntax ezpolar(f)
ezpolar(f, [a, b])

Description ezpolar(f) plots the polar curve r = f(θ) over the default domain
0 < θ < 2π.

ezpolar(f, [a, b]) plots f for a < θ < b.

Example This example creates a polar plot of the function,

1 + cos(t)

over the domain [0, 2π].

syms t
ezpolar(1 + cos(t))
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Purpose 3-D colored surface plotter

Syntax ezsurf(f)
ezsurf(f,domain)
ezsurf(x,y,z)
ezsurf(x,y,z,[smin,smax,tmin,tmax])
ezsurf(x,y,z,[min,max])
ezsurf(...,n)
ezsurf(...,'circ')

ezsurf(f) plots over the default domain –2π < x < 2π, –2π < y < 2π.
MATLAB software chooses the computational grid according to the
amount of variation that occurs; if the function f is not defined (singular)
for points on the grid, then these points are not plotted.

ezsurf(f,domain) plots f over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min,
max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezsurf(u^2 - v^3,[0,1],[3,6]) plots u2 – v3

over 0 < u < 1, 3 < v < 6.

ezsurf(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z =
z(s,t) over the square –2π < s < 2π, –2π < t < 2π.

ezsurf(x,y,z,[smin,smax,tmin,tmax]) or
ezsurf(x,y,z,[min,max]) plots the parametric surface using the
specified domain.

ezsurf(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurf(...,'circ') plots f over a disk centered on the domain.

Examples ezsurf does not graph points where the mathematical function is not
defined (these data points are set to NaNs, which MATLAB does not plot).
This example illustrates this filtering of singularities/discontinuous
points by graphing the function,
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f(x,y) = real(atan(x + iy))

over the default domain –2π < x < 2π, –2π < y < 2π.

syms x y
ezsurf(real(atan(x+i*y)))

Note also that ezsurf creates graphs that have axis labels, a title, and
extend to the axis limits.

See Also ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot, ezpolar, ezsurfc,
surf
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Purpose Combined surface and contour plotter

Syntax ezsurfc(f)
ezsurfc(f,domain)
ezsurfc(x,y,z)
ezsurfc(x,y,z,[smin,smax,tmin,tmax])
ezsurfc(x,y,z,[min,max])
ezsurfc(...,n)
ezsurfc(...,'circ')

Description ezsurfc(f) creates a graph of f(x,y), where f is a symbolic expression
that represents a mathematical function of two variables, such as x
and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezsurfc(f,domain) plots f over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min,
max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezsurfc(u^2 - v^3,[0,1],[3,6]) plots u2 – v3

over 0 < u < 1, 3 < v < 6.

ezsurfc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z
= z(s,t) over the square –2π < s < 2π, –2π < t < 2π.

ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or
ezsurfc(x,y,z,[min,max]) plots the parametric surface using the
specified domain.

ezsurfc(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurfc(...,'circ') plots f over a disk centered on the domain.
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Examples Create a surface/contour plot of the expression,

f x y
y

x y
( , ) ,=

+ +1 2 2

over the domain –5 < x < 5, –2π < y < 2π, with a computational grid
of size 35-by-35

syms x y
ezsurfc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi],35)

Use the mouse to rotate the axes to better observe the contour lines
(this picture uses a view of azimuth = -65 and elevation = 26).
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See Also ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot, ezpolar, ezsurf,
surfc
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Purpose Factorization

Syntax factor(X)

Description factor(X) can take a positive integer, an array of symbolic expressions,
or an array of symbolic integers as an argument. If N is a positive
integer, factor(N) returns the prime factorization of N.

If S is a matrix of polynomials or integers, factor(S) factors each
element. If any element of an integer array has more than 16 digits,
you must use sym to create that element, for example, sym('N').

Examples Factorize the two-variable expression:

syms x y;
factor(x^3-y^3)

The result is:

ans =
(x - y)*(x^2 + x*y + y^2)

Factorize the expressions that form a vector:

syms a b;
factor([a^2 - b^2, a^3 + b^3])

The result is:

ans =
[ (a - b)*(a + b), (a + b)*(a^2 - a*b + b^2)]

Factorize the symbolic number:

factor(sym('12345678901234567890'))

The result is:
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ans =
2*3^2*5*101*3541*3607*3803*27961

See Also collect, expand, horner, simplify, simple
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Purpose Evaluate MuPAD expressions

Syntax result = feval(symengine,F,x1,...,xn)
[result,status] = feval(symengine,F,x1,...,xn)

Description result = feval(symengine,F,x1,...,xn) evaluates F, which is
either a MuPAD function name or a symbolic object, with arguments
x1,...,xn, with result a symbolic object.

[result,status] = feval(symengine,F,x1,...,xn) returns the
error status in status, and the error message in g if status is nonzero.
If status is 0, result is a symbolic object; otherwise, it g is a string.

Examples
syms a b c x
p = a*x^2+b*x+c;
feval(symengine,'polylib::discrim', p, x)

ans =
b^2 - 4*a*c

Alternatively, the same calculation based on variables not defined in
the MATLAB workspace is:

feval(symengine,'polylib::discrim', 'a*x^2
+ b*x + c', 'x')

ans =
b^2 - 4*a*c

See Also doc, evalin

“Calling MuPAD Functions at the MATLAB Command Line” on page
4-27
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Purpose Determine variables in symbolic expression or matrix

Syntax findsym(S)
findsym(S,n)

Description findsym(S) for a symbolic expression or matrix S, returns all symbolic
variables in S in lexicographical order, separated by commas. If S does
not contain any variables, findsym returns an empty string.

findsym(S,n) returns the n variables alphabetically closest to x:

1 The variables are sorted by the first letters in their names. The
ordering is x y w z v u ... a X Y W Z V U ... A. The name of a symbolic
variable cannot begin with a number.

2 For all subsequent letters the ordering is alphabetical, with
all uppercase letters having precedence over lowercase:
0 1 ... 9 A B ... Z a b ...z.

Note findsym(S) can return variables in different order than
findsym(S,n).

Examples
syms a x y z t X1 x2 xa xb
findsym(sin(pi*t))

ans =
t

findsym(x+i*y-j*z)

ans =
x,y,z

findsym(a+y,1)
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ans =
y

findsym(X1 + x2 + xa + xb)

ans =
X1,x2,xa,xb

findsym(X1 + x2 + xa + xb,4)

ans =
x2,xa,xb,X1

See Also compose, diff, int, limit, symvar, taylor
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Purpose Functional inverse

Syntax g = finverse(f)
g = finverse(f,v)

Description g = finverse(f) returns the functional inverse of f. f is a scalar sym
representing a function of one symbolic variable, say x. Then g is a
scalar sym that satisfies g(f(x)) = x. That is, finverse(f) returns f–1,
provided f–1 exists.

g = finverse(f,v) uses the symbolic variable v, where v is a sym, as
the independent variable. Then g is a scalar sym that satisfies g(f(v))
= v. Use this form when f contains more than one symbolic variable.

Examples Compute functional inverse for the trigonometric function:

syms x u v;
finverse(1/tan(x))

The result is:

ans =
atan(1/x)

Compute functional inverse for the exponent function:

finverse(exp(u - 2*v), u)

The result is:

ans =
2*v + log(u)

See Also compose, syms
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Purpose Round toward zero

Syntax fix(X)

Description fix(X) is the matrix of the integer parts of X.

fix(X) = floor(X) if X is positive and ceil(X) if X is negative.

See Also round, ceil, floor, frac
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Purpose Round symbolic matrix toward negative infinity

Syntax floor(X)

Description floor(X) is the matrix of the greatest integers less than or equal to X.

Example
x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[ -2, -3, -3, -2, -1/2]

See Also round, ceil, fix, frac
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Purpose Fortran representation of symbolic expression

Syntax fortran(S)
fortran(S,'file',fileName)

Description fortran(S) returns the Fortran code equivalent to the expression S.

fortran(S,'file',fileName) writes an “optimized” Fortran code
fragment that evaluates the symbolic expression S to the file named
fileName. “Optimized” means intermediate variables are automatically
generated in order to simplify the code.

Examples The statements

syms x
f = taylor(log(1+x));
fortran(f)

return

ans =

t0 = x-x**2*(1.0D0/2.0D0)+x**3*(1.0D0/3.0D0)-x**4*(1.0D0/4.0D0)+x*

~*5*(1.0D0/5.0D0)

The statements

H = sym(hilb(3));
fortran(H)

return

ans =
H(1,1) = 1
H(1,2) = 1.0D0/2.0D0
H(1,3) = 1.0D0/3.0D0
H(2,1) = 1.0D0/2.0D0
H(2,2) = 1.0D0/3.0D0
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H(2,3) = 1.0D0/4.0D0
H(3,1) = 1.0D0/3.0D0
H(3,2) = 1.0D0/4.0D0
H(3,3) = 1.0D0/5.0D0

The statements

syms x
z = exp(-exp(-x));
fortran(diff(z,3),'file','fortrantest');

return a file named fortrantest containing the following:

t7 = exp(-x)
t8 = exp(-t7)
t0 = t8*exp(x*(-2))*(-3)+t8*exp(x*(-3))+t7*t8

See Also ccode, latex, matlabFunction, pretty

“Generating Code from Symbolic Expressions” on page 3-129
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Purpose Fourier integral transform

Syntax F = fourier(f)
F = fourier(f,v)
F = fourier(f,u,v)

Description F = fourier(f) is the Fourier transform of the symbolic scalar f
with default independent variable x. The default return is a function
of w. The Fourier transform is applied to a function of x and returns
a function of w.

f f x F F w= ⇒ =( ) ( )

If f = f(w), fourier returns a function of t.

F = F(t)

By definition,

F w f x e dxiwx( ) ( )= −

−∞

∞

∫

where x is the symbolic variable in f as determined by symvar.

F = fourier(f,v) makes F a function of the symbol v instead of the
default w.

F v f x e dxivx( ) ( )= −

−∞

∞

∫

F = fourier(f,u,v) makes f a function of u and F a function of v
instead of the default variables x and w, respectively.

F v f u e duivu( ) ( )= −

−∞

∞

∫
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Examples
Fourier Transform MATLAB Commands

f x e x( ) = − 2

F f w f x e dxixw[ ] = −

−∞

∞

∫( ) ( )

=
−

 e
w2 4/

syms x;
f = exp(-x^2);
fourier(f)

returns

ans =
pi^(1/2)/exp(w^2/4)

g w e w( ) = −

F g t g w e dwitw[ ] = −

−∞

∞

∫( ) ( )

=
+
2

1 2t

syms w;
g = exp(-abs(w));
fourier(g)

returns

ans =
2/(v^2 + 1)

f x xe x( ) = −

F f u f x e dxixu[ ] = −

−∞

∞

∫( ) ( )

= −
+
4

1 2 2
iu

u( )

syms x u;
f = x*exp(-abs(x));
fourier(f,u)

returns

ans =
-(4*i*u)/(u^2 + 1)^2

f x v e x
x

v v
v( , ) ,

sin

=
− 2

  real
syms v u;
syms x real;
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Fourier Transform MATLAB Commands

F f v u f x v e dvivu( ) ( ) ( , )[ ] = −

−∞

∞

∫

= − − + +
arc arctan tan

u

x

u

x

1 1
2 2

f = exp(-x^2*abs(v))*sin(v)/v;
fourier(f,v,u)

returns

ans =
piecewise([x <> 0,...
atan((u + 1)/x^2)...
- atan(1/x^2*(u - 1))])

See Also ifourier, laplace, ztrans
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Purpose Symbolic matrix elementwise fractional parts

Syntax frac(X)

Description frac(X) is the matrix of the fractional parts of the elements: frac(X)
= X - fix(X).

Example
x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[ -2, -3, -3, -2, -1/2]

See Also round, ceil, floor, fix
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Purpose Function calculator

Syntax funtool

Description funtool is a visual function calculator that manipulates and displays
functions of one variable. At the click of a button, for example, funtool
draws a graph representing the sum, product, difference, or ratio of two
functions that you specify. funtool includes a function memory that
allows you to store functions for later retrieval.

At startup, funtool displays graphs of a pair of functions, f(x) = x
and g(x) = 1. The graphs plot the functions over the domain [-2*pi,
2*pi]. funtool also displays a control panel that lets you save, retrieve,
redefine, combine, and transform f and g.
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Text Fields

The top of the control panel contains a group of editable text fields.

f= Displays a symbolic expression representing f. Edit
this field to redefine f.

g= Displays a symbolic expression representing g. Edit
this field to redefine g.

x= Displays the domain used to plot f and g. Edit this
field to specify a different domain.

a= Displays a constant factor used to modify f (see
button descriptions in the next section). Edit this
field to change the value of the constant factor.

funtool redraws f and g to reflect any changes you make to the
contents of the control panel’s text fields.

Control Buttons

The bottom part of the control panel contains an array of buttons that
transform f and perform other operations.

The first row of control buttons replaces f with various transformations
of f.

df/dx Derivative of f

int f Integral of f

simple f Simplified form of f, if possible

num f Numerator of f

den f Denominator of f

1/f Reciprocal of f

finv Inverse of f

The operators intf and finv may fail if the corresponding symbolic
expressions do not exist in closed form.
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The second row of buttons translates and scales f and the domain of f
by a constant factor. To specify the factor, enter its value in the field
labeled a= on the calculator control panel. The operations are

f+a Replaces f(x) by f(x) + a.

f-a Replaces f(x) by f(x) - a.

f*a Replaces f(x) by f(x) * a.

f/a Replaces f(x) by f(x) / a.

f^a Replaces f(x) by f(x) ^ a.

f(x+a) Replaces f(x) by f(x + a).

f(x*a) Replaces f(x) by f(x * a).

The first four buttons of the third row replace f with a combination
of f and g.

f+g Replaces f(x) by f(x) + g(x).

f-g Replaces f(x) by f(x)-g(x).

f*g Replaces f(x) by f(x) * g(x).

f/g Replaces f(x) by f(x) / g(x).

The remaining buttons on the third row interchange f and g.

g=f Replaces g with f.

swap Replaces f with g and g with f.

The first three buttons in the fourth row allow you to store and retrieve
functions from the calculator’s function memory.

Insert Adds f to the end of the list of stored functions.

Cycle Replaces f with the next item on the function list.

Delete Deletes f from the list of stored functions.
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The other four buttons on the fourth row perform miscellaneous
functions:

Reset Resets the calculator to its initial state.

Help Displays the online help for the calculator.

Demo Runs a short demo of the calculator.

Close Closes the calculator’s windows.

See Also ezplot, syms
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Purpose Get variable from MuPAD notebook

Syntax y = getVar(nb,'z')

Description y = getVar(nb,'z') assigns the symbolic expression z in the MuPAD
notebook nb to a symbolic variable y in the MATLAB workspace.

Example
mpnb = mupad;
% make a variable f:=x^2 in the MuPAD notebook
f = getVar(mpnb,'f')

f is a symbolic variable in the MATLAB workspace, with value x^2.

See Also mupad, setVar
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Purpose Compute Heaviside step function

Syntax heaviside(x)

Description heaviside(x) has the value 0 for x < 0, 1 for x > 0, and 0.5 for x = 0.

Examples For x < 0 the function heaviside(x) returns 0:

heaviside(sym(-3))

ans =
0

For x > 0 the function, heaviside(x) returns 1:

heaviside(sym(3))

ans =
1

For x = 0 the function, heaviside(x) returns 1/2:

heaviside(sym(0))

ans =
1/2

For numeric x = 0 the function, heaviside(x) returns the numeric
result:

heaviside(0)

ans =
0.5000

See Also dirac
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Purpose Horner nested polynomial representation

Syntax horner(P)

Description Suppose P is a matrix of symbolic polynomials. horner(P) transforms
each element of P into its Horner, or nested, representation.

Examples Find nested polynomial representation of the polynomial:

syms x
horner(x^3-6*x^2+11*x-6)

The result is

ans =
x*(x*(x - 6) + 11) - 6

Find nested polynomial representation for the polynomials that form a
vector:

syms x y
horner([x^2+x;y^3-2*y])

The result is:

ans =
x*(x + 1)

y*(y^2 - 2)

See Also expand, factor, simple, simplify, syms
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Purpose Generalized hypergeometric

Syntax hypergeom(n,d,z)

Description hypergeom(n,d,z) is the generalized hypergeometric function F(n, d,
z), also known as the Barnes extended hypergeometric function and
denoted by jFk where j = length(n) and k = length(d). For scalar a,
b, and c, hypergeom([a,b],c,z) is the Gauss hypergeometric function

2F1(a,b;c;z).

The definition by a formal power series is

F n d z
C

C
z
k

n k

d kk

k
( , , )

!
,,

,
= ⋅

=

∞

∑
0

where

C
v k

vv k
j

jj

v

,
( )

( )
.=

+

=
∏

Γ
Γ1

Either of the first two arguments may be a vector providing the
coefficient parameters for a single function evaluation. If the third
argument is a vector, the function is evaluated pointwise. The result
is numeric if all the arguments are numeric and symbolic if any of the
arguments is symbolic.

See Abramowitz and Stegun, Handbook of Mathematical Functions,
Chapter 15.

Examples Compute hypergeometric functions:

syms a z
q = hypergeom([],[],z)
r = hypergeom(1,[],z)
s = hypergeom(a,[],z)
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The results are:

q =
exp(z)

r =
-1/(z - 1)

s =
1/(1 - z)^a
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Purpose Inverse Fourier integral transform

Syntax f = ifourier(F)
f = ifourier(F,u)
f = ifourier(F,v,u)

Description f = ifourier(F) is the inverse Fourier transform of the scalar
symbolic object F with default independent variable w. The default
return is a function of x. The inverse Fourier transform is applied to a
function of w and returns a function of x.

F F w f f x= ⇒ =( ) ( ).

If F = F(x), ifourier returns a function of t:

f = f(t)

By definition

f x F w e dwiwx( ) /( ) ( ) .=
−∞

∞

∫1 2

f = ifourier(F,u) makes f a function of u instead of the default x.

f u F w e dwiwu( ) /( ) ( ) .=
−∞

∞

∫1 2

Here u is a scalar symbolic object.

f = ifourier(F,v,u) takes F to be a function of v and f to be a
function of u instead of the default w and x, respectively.

f u F v e dvivu( ) /( ) ( ) .=
−∞

∞

∫1 2
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Examples
Inverse Fourier Transform MATLAB Commands

f w e w a( ) /( )= − 2 24

F f x f w e dwixw−

−∞

∞
[ ] = ∫1 1

2
( ) ( )



= −a
e ax


( ) 2

syms a w real;
f = exp(-w^2/(4*a^2));
F = ifourier(f);
F = simple(F)

returns

F =

abs(a)/(pi^(1/2)*exp(a^2*x^2))

g x e x( ) = −

F g t g x e dxitx−

−∞

∞
[ ]( ) = ∫1 1

2
( )

=
+( )
1

1 2 t

syms x real;
g = exp(-abs(x));
ifourier(g)

returns

ans =
1/(pi*(t^2 + 1))

f w e w( ) = −−2 1

F f t f w e dwitw−

−∞

∞
[ ]( ) = ∫1 1

2
( )

= − +
+

dirac( )
( )

t
t

2

1 2

syms w t real;
f = 2*exp(-abs(w)) - 1;
simplify(ifourier(f,t))

returns

ans =

2/(pi*(t^2 + 1)) - dirac(t)

See Also fourier, ilaplace, iztrans

6-96



ilaplace

Purpose Inverse Laplace transform

Syntax F = ilaplace(L)
F = ilaplace(L,y)
F = ilaplace(L,y,x)

Description F = ilaplace(L) is the inverse Laplace transform of the scalar
symbolic object L with default independent variable s. The default
return is a function of t. The inverse Laplace transform is applied to a
function of s and returns a function of t.

L L s F F t= ⇒ =( ) ( )

If L = L(t), ilaplace returns a function of x.

F = F(x)

By definition

F t
i

L s e dsst

c i

c i

( ) ( ) ,=
− ∞

+ ∞

∫1
2

where c is a real number selected so that all singularities of L(s) are to
the left of the line s = c, i.

F = ilaplace(L,y) makes F a function of y instead of the default t.

F y
i

L y e dssy

c i

c i

( ) ( )=
− ∞

+ ∞

∫1
2

Here y is a scalar symbolic object.

F = ilaplace(L,y,x) takes F to be a function of x and L a function of y
instead of the default variables t and s, respectively.
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F x
i

L y e dyxy

c i

c i

( ) ( )=
− ∞

+ ∞

∫1
2

Examples
Inverse Laplace Transform MATLAB Command

f s
s

( ) = 1
2

L f
i

f s e dsst

c ivo

c ivo
−

−

+
[ ] = ∫1 1

2
( )

= t

syms s;
f = 1/s^2;
ilaplace(f)

returns

ans =
t

g t
t a

( ) =
−( )
1

2

L g
i

g t e dtxt

c i

c i
−

− ∞

+ ∞
[ ] = ∫1 1

2
( )

= xeax

syms a t;
g = 1/(t-a)^2;
ilaplace(g)

returns

ans =
x*exp(a*x)

f u
u a

( ) =
−
1

2 2

L f
i

g u e duxu

c i

c i
−

− ∞

+ ∞
[ ] = ∫1 1

2
( )

=
( )sinh xa

a

syms x u;
syms a real;
f = 1/(u^2-a^2);
simplify(ilaplace(f,x))

returns

ans =
sinh(a*x)/a
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See Also ifourier, iztrans, laplace
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Purpose Imaginary part of complex number

Syntax imag(Z)

Description imag(Z) is the imaginary part of a symbolic Z.

See Also conj, real
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Purpose Integrate symbolic expression

Syntax int(expr)
int(expr, v)
int(expr, a, b)
int(expr, v, a, b)

Description int(expr) returns the indefinite integral of expr with respect to its
symbolic variable as defined by symvar.

int(expr, v) returns the indefinite integral of expr with respect to
the symbolic scalar variable v.

int(expr, a, b) returns the definite integral from a to b of expr
with respect to the default symbolic variable. a and b are symbolic or
double scalars.

int(expr, v, a, b) returns the definite integral of expr with respect
to v from a to b.

Examples Find indefinite integral of the following single-variable expression:

syms x;
int(-2*x/(1 + x^2)^2)

The result is:

ans =
1/(x^2 + 1)

Find indefinite integral of the following multivariable expression with
respect to z:

syms x z;
int(x/(1 + z^2), z)

The result is:
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ans =
x*atan(z)

Integral the following expression from 0 to 1:

syms x;
int(x*log(1 + x), 0, 1)

The result is:

ans =
1/4

Integral the following expression from sin(t) to 1:

syms x t;
int(2*x, sin(t), 1)

The result is:

ans =
cos(t)^2

Find indefinite integrals for the expressions listed as the elements of a
matrix:

syms x t z;
alpha = sym('alpha');
int([exp(t), exp(alpha*t)])

The result is:

ans =
[ exp(t), exp(alpha*t)/alpha]
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See Also diff | symsum | symvar
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int8, int16, int32, int64

Purpose Convert symbolic matrix to signed integers

Syntax int8(S)
int16(S)
int32(S)
int64(S)

Description int8(S) converts a symbolic matrix S to a matrix of signed 8-bit
integers.

int16(S) converts S to a matrix of signed 16-bit integers.

int32(S) converts S to a matrix of signed 32-bit integers.

int64(S) converts S to a matrix of signed 64-bit integers.

Note The output of int8, int16, int32, and int64 does not have data
type symbolic.

The following table summarizes the output of these four functions.

Function Output Range
Output
Type

Bytes
per
Element

Output
Class

int8 -128 to 127 Signed 8-bit
integer

1 int8

int16 -32,768 to 32,767 Signed 16-bit
integer

2 int16

int32 -2,147,483,648 to 2,147,483,647 Signed 32-bit
integer

4 int32

int64 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Signed 64-bit
integer

8 int64

See Also sym, vpa, single, double, uint8, uint16, uint32, uint64
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Purpose Compute symbolic matrix inverse

Syntax R = inv(A)

Description R = inv(A) returns inverse of the symbolic matrix A.

Examples Compute the inverse of the following matrix of symbolic numbers:

A = sym([2,-1,0;-1,2,-1;0,-1,2]);
inv(A)

The result is:

ans =
[ 3/4, 1/2, 1/4]
[ 1/2, 1, 1/2]
[ 1/4, 1/2, 3/4]

Compute the inverse of the following symbolic matrix:

syms a b c d
A = [a b; c d];
inv(A)

The result is:

ans =
[ d/(a*d - b*c), -b/(a*d - b*c)]
[ -c/(a*d - b*c), a/(a*d - b*c)]

Compute the inverse of the symbolic Hilbert matrix:

inv(sym(hilb(4)))
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The result is:

ans =
[ 16, -120, 240, -140]
[ -120, 1200, -2700, 1680]
[ 240, -2700, 6480, -4200]
[ -140, 1680, -4200, 2800]

See Also eig | det | rank
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Purpose Inverse z-transform

Syntax f = iztrans(F)
f = iztrans(F,k)
f = iztrans(F,w,k)

Description f = iztrans(F) is the inverse z-transform of the scalar symbolic object
F with default independent variable z. The default return is a function
of n.

f n
i

F z z dz nn

z R

( ) ( ) , , ,...= =−

=
∫1

2
1 21


 �

where R is a positive number chosen so that the function F(z) is analytic
on and outside the circle |z| = R.

If F = F(n), iztrans returns a function of k.

f = f(k)

f = iztrans(F,k) makes f a function of k instead of the default n.
Here k is a scalar symbolic object.

f = iztrans(F,w,k) takes F to be a function of w instead of the default
symvar(F) and returns a function of k.

F F w f f k= ⇒ =( ) ( )
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Examples
Inverse Z-Transform MATLAB Operation

f z
z

z
( )

( )
=

−
2

2 2

Z f
i

f s z dzn

z R

− −

=

[ ] = ∫1 11
2

( )�

= n2n

syms z
f = 2*z/(z-2)^2;
iztrans(f)

returns

ans =
2^n + 2^n*(n - 1)

g n
n n

n n
( )

( )= +
+ +

1

2 12

Z g
i

g n n dnk

n R

− −

=

= ∫1 11
2

( )�

= –1k

syms n
g = n*(n+1)/(n^2+2*n+1);
iztrans(g)

returns

ans =
(-1)^k

f z
z

z a
( ) =

−

Z f
i

f z z dzk

z R

− −

=

[ ] = ∫1 11
2

( )�

= ak if a ≠ 0

syms z a k
f = z/(z-a);
simplify(iztrans(f,k))

returns

ans =
piecewise([a <> 0,
a^k])

See Also ifourier, ilaplace, ztrans
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Purpose Compute Jacobian matrix

Syntax jacobian(f, v)

Description jacobian(f, v) computes the Jacobian of the scalar or vector f with

respect to v. The (i, j)-th entry of the result is ∂ ∂f i v j( ) / ( ) . If f is
scalar, the Jacobian of f is the gradient of f. If v is a scalar, the result
equals to diff(f, v).

Examples Compute the Jacobians of the following vectors:

syms x y z
f = [x*y*z; y; x + z];
v = [x, y, z];
R = jacobian(f, v)
b = jacobian(x + z, v)

The result is

R =
[ y*z, x*z, x*y]
[ 0, 1, 0]
[ 1, 0, 1]

b =
[ 1, 0, 1]

See Also diff
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Purpose Compute Jordan canonical form of matrix

Syntax J = jordan(A)
[V, J] = jordan(A)

Description J = jordan(A) computes the Jordan canonical (normal) form of a
symbolic or numeric matrix A. The Jordan form of a numeric matrix is
extremely sensitive to numerical errors. To compute Jordan canonical
form of a matrix, represent the elements of the matrix by integers or
ratios of small integers, if possible.

[V, J] = jordan(A) computes the Jordan canonical form J and
the similarity transform V. The matrix V contains the generalized
eigenvectors of A as columns, and V\A*V = J.

Examples Compute the Jordan canonical form and the similarity transform for the
following numeric matrix. Verify that the resulting matrix V satisfies
the condition V\A*V = J:

A = [1 -3 -2; -1 1 -1; 2 4 5]
[V, J] = jordan(A)
V\A*V

The result is:

A =
1 -3 -2

-1 1 -1
2 4 5

V =
-1 1 -1
-1 0 0
2 0 1

J =
2 1 0
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0 2 0
0 0 3

ans =
2 1 0
0 2 0
0 0 3

See Also eig | inv | poly
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Purpose Lambert’s W function

Syntax W = lambertw(X)
W = lambertw(K,X)

Description W = lambertw(X) evaluates Lambert’s W function at the elements of X,
a numeric matrix or a symbolic matrix. Lambert’sW solves the equation

wew = x

for w as a function of x.

W = lambertw(K,X) is the K-th branch of this multi-valued function.

Examples Compute Lambert’s W function:

lambertw([0 -exp(-1); pi 1])

The result is:

ans =
0 -1.0000

1.0737 0.5671

The statements

syms x y
lambertw([0 x;1 y])

return

ans =
[ 0, lambertw(0, x)]
[ lambertw(0, 1), lambertw(0, y)]
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References [1] Corless, R.M, G.H. Gonnet, D.E.G. Hare, and D.J. Jeffrey, Lambert’s
W Function in Maple, Technical Report, Dept. of Applied Math., Univ.
of Western Ontario, London, Ontario, Canada.

[2] Corless, R.M, Gonnet, G.H. Gonnet, D.E.G. Hare, and D.J. Jeffrey,
On Lambert’s W Function, Technical Report, Dept. of Applied Math.,
Univ. of Western Ontario, London, Ontario, Canada.

Both papers are available by anonymous FTP from

cs-archive.uwaterloo.ca
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Purpose Laplace transform

Syntax laplace(F)
laplace(F, t)
laplace(F, w, z)

Description L = laplace(F) is the Laplace transform of the scalar symbol F with
default independent variable t. The default return is a function of
s. The Laplace transform is applied to a function of t and returns
a function of s.

F F t L L s= ⇒ =( ) ( )

If F = F(s), laplace returns a function of t.

L = L(t)

By definition

L s F t e dtst( ) ( )= −
∞

∫
0

where t is the symbolic variable in F as determined by symvar.

L = laplace(F,t) makes L a function of t instead of the default s.

L t F x e dxtx( ) ( )= −
∞

∫
0

Here L is returned as a scalar symbol.

L = laplace(F,w,z) makes L a function of z and F a function of w
instead of the default variables s and t, respectively.
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L z F w e dwzw( ) ( )= −
∞

∫
0

Examples
Laplace Transform MATLAB Command

f(t) = t4

L f f t e dtts[ ] = −
∞

∫ ( )
0

= 24
5s

syms t;
f = t^4;
laplace(f)

returns

ans =
24/s^5

g s
s

( ) = 1

L g t g s e dsst[ ]( ) = −
∞

∫ ( )
0

= 
t

syms s;
g = 1/sqrt(s);
laplace(g)

returns

ans =
pi^(1/2)/t^(1/2)

f(t) = e–at

L f x f t e dttx[ ] = −
∞

∫( ) ( )
0

=
+
1

x a

syms t a x;
f = exp(-a*t);
laplace(f,x)

returns

ans =
1/(a + x)
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See Also fourier, ilaplace, ztrans
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Purpose LaTeX representation of symbolic expression

Syntax latex(S)

Description latex(S) returns the LaTeX representation of the symbolic expression
S.

Examples The statements

syms x
f = taylor(log(1+x));
latex(f)

return

ans =

\frac{x^5}{5} - \frac{x^4}{4} + \frac{x^3}{3} - \frac{x^2}{2} + x

The statements

H = sym(hilb(3));
latex(H)

return

ans =
\left(\begin{array}{ccc} 1 & \frac{1}{2} & \frac{1}{3}\\...
\frac{1}{2} & \frac{1}{3} & \frac{1}{4}\\...
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{array}\right)

The statements

syms t;
alpha = sym('alpha');
A = [alpha t alpha*t];
latex(A)
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return

ans =

\left(\begin{array}{ccc} \mathrm{alpha} & t & \mathrm{alpha}\, t...

\end{array}\right)

You can use the latex command to annotate graphs:

syms x
f = taylor(log(1+x));
ezplot(f)
hold on
title(['$' latex(f) '$'],'interpreter','latex')
hold off

See Also pretty, ccode, fortran
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Purpose Compute limit of symbolic expression

Syntax limit(expr, x, a)
limit(expr, a)
limit(expr)
limit(expr, x, a, 'left')
limit(expr, x, a, 'right')

Description limit(expr, x, a) computes bidirectional limit of the symbolic
expression expr when x approaches a.

limit(expr, a) computes bidirectional limit of the symbolic expression
expr when the default variable approaches a.

limit(expr) computes bidirectional limit of the symbolic expression
expr when the default variable approaches 0.

limit(expr, x, a, 'left') computes the limit of the symbolic
expression expr when x approaches a from the left.

limit(expr, x, a, 'right') computes the limit of the symbolic
expression expr when x approaches a from the right.

Examples Compute bidirectional limits for the following expressions:

syms x h;
limit(sin(x)/x)
limit((sin(x + h) - sin(x))/h, h, 0)

The results are

ans =
1

ans =
cos(x)
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Compute the limits from the left and right for the following expressions:

syms x;
limit(1/x, x, 0, 'right')
limit(1/x, x, 0, 'left')

The results are

ans =
Inf

ans =
-Inf

Compute the limit for the functions presented as elements of a vector:

syms x a;
v = [(1 + a/x)^x, exp(-x)];
limit(v, x, inf)

The result is

ans =
[ exp(a), 0]

See Also diff | taylor
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Purpose Logarithm base 10 of entries of symbolic matrix

Syntax Y = log10(X)

Description Y = log10(X) returns the logarithm to the base 10 of X. If X is a matrix,
Y is a matrix of the same size, each entry of which is the logarithm of
the corresponding entry of X.

See Also log2
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Purpose Logarithm base 2 of entries of symbolic matrix

Syntax Y = log2(X)

Description Y = log2(X) returns the logarithm to the base 2 of X. If X is a matrix, Y
is a matrix of the same size, each entry of which is the logarithm of the
corresponding entry of X.

See Also log10
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Purpose Convert symbolic expression to function handle or file

Syntax g = matlabFunction(f)
g = matlabFunction(f1, f2, ...)
g = matlabFunction(f,param1,value1,...)

Description g = matlabFunction(f) converts the symbolic expression f to a
MATLAB function with the handle g.

g = matlabFunction(f1, f2, ...) converts a list of the symbolic
expressions f1, f2, ... to a MATLAB function with multiple outputs.
The function handle is g.

g = matlabFunction(f,param1,value1,...) converts the symbolic
expression f to a MATLAB function with the handle g. The command
accepts the following options for parameter/value pairs:

• Parameter = 'file' allows you to generate an optimized M-file that
can accept double or matrix arguments and evaluate the symbolic
expression applied to the arguments. Optimized means intermediate
variables are automatically generated to simplify or speed the code.
value should be a string representing the path to the M-file. If the
string is empty, matlabFunction generates an anonymous function.
If the string does not end in .m , the function appends .m .

• Parameter = 'outputs' allows you to set the names of the output
variables. value should be a cell array of strings. The default
names of output variables coincide with the names you use calling
matlabFunction. If you call matlabFunction using an expression
instead of individual variables, the default names of output variables
consist of the word out followed by the number, for example, out3.

• Parameter = 'vars' allows you to set the order of the input variables
or symbolic vectors in the resulting function handle or M-file. The
default order is alphabetical. value should be either a cell array of
strings or symbolic arrays, or a vector of symbolic variables. The
number of value entries should equal or exceed the number of free
variables in the symbolic expression f.
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Note To convert a MuPAD expression or function to a MATLAB
function, use f = evalin(symengine,'MuPAD_Expression') or f =
feval(symengine, 'MuPAD_Function',x1,...,xn). matlabFunction
cannot correctly convert some MuPAD expressions to MATLAB
functions. These expressions do not trigger an error message. When
converting a MuPAD expression or function that is not on the MATLAB
vs. MuPAD Expressions list, always check the results of conversion. To
verify the results, execute the resulting function.

Symbolic Math Toolbox with a Maple engine does not support
matlabFunction. For details, see “Differences in Functionality When
Using MuPAD and Maple Engines” on page 4-43.

Examples
syms x y
r = sqrt(x^2 + y^2);
ht = matlabFunction(sin(r)/r)

ht =
@(x,y)sin(sqrt(x.^2+y.^2)).*1./sqrt(x.^2+y.^2)

The following example generates a file:

syms x y z
r = x^2 + y^2 + z^2;
f = matlabFunction(log(r)+r^(-1/2),'file','myfile');

If the file myfile.m already exists in the current directory,
matlabFunction replaces the existing function with the converted
symbolic expression. You can open and edit the resulting file:

function out1 = myfile(x,y,z)
%MYFILE
% OUT1 = MYFILE(X,Y,Z)

% This function was generated

6-124



matlabFunction

% by the Symbolic Math Toolbox version 5.2.
% 07-Nov-2008 14:38:59

t2 = x.^2;
t3 = y.^2;
t4 = z.^2;
t5 = t2 + t3 + t4;
out1 = log(t5) + 1./t5.^(1./2);

You can change the order of the input variables:

syms x y z
r = x^2 + y^2 + z^2;
matlabFunction(r, 'file', 'new_function',...
'vars', [y z x]);

The created new_function accepts variables in the required order:

function r = new_function(y,z,x)
%NEW_FUNCTION
% R = NEW_FUNCTION(Y,Z,X)

% This function was generated
% by the Symbolic Math Toolbox version 5.2.
% 31-Oct-2008 18:13:19

r = x.^2 + y.^2 + z.^2;

You can specify that the input arguments are vectors:

syms x y z t
r = x^2 + y^2 + z^2;
matlabFunction(r, 'file', 'new_function',...
'vars', {t, [x y z]});

The resulting function operates on vectors:

function r = new_function(t,in2)
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%NEW_FUNCTION
% R = NEW_FUNCTION(T,IN2)

% This function was generated
% by the Symbolic Math Toolbox version 5.2.
% 03-Nov-2008 18:19:37

x = in2(:,1);
y = in2(:,2);
z = in2(:,3);
r = x.^2 + y.^2 + z.^2;

You can name of the output variables:

syms x y z
r = x^2 + y^2 + z^2;
q = x^2 - y^2 - z^2;
f = matlabFunction(r, q, 'file', 'new_function',...
'outputs', {'name1','name2'});

The generated function returns name1 and name2:

function [name1,name2] = new_function(x,y,z)
%NEW_FUNCTION
% [NAME1,NAME2] = NEW_FUNCTION(X,Y,Z)

% This function was generated
% by the Symbolic Math Toolbox version 5.2.
% 31-Oct-2008 18:20:48

t9 = x.^2;
t10 = y.^2;
t11 = z.^2;
name1 = t10 + t11 + t9;
if nargout > 1

name2 = t9 - t11 - t10;
end
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Also, you can convert MuPAD expressions:

syms x y;
f = evalin(symengine, 'arcsin(x) + arccos(y)');
matlabFunction(f, 'file', 'new_function');

The created file contains the same expressions written in the MATLAB
language:

function f = new_function(x,y)
%NEW_FUNCTION
% F = NEW_FUNCTION(X,Y)

% This function was generated
% by the Symbolic Math Toolbox version 5.2.
% 31-Oct-2008 17:41:12

f = asin(x) + acos(y);

See Also ccode, fortran, subs, sym2poly, emlBlock

“Generating Code from Symbolic Expressions” on page 3-129
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Purpose Numeric evaluation of special mathematical function

Syntax mfun('function',par1,par2,par3,par4)

Description mfun('function',par1,par2,par3,par4) numerically evaluates one
of the Maple special mathematical functions. If you use the MuPAD
engine, Symbolic Math Toolbox software translates the name of the
Maple function to a call to the appropriate MuPAD functions. If you
use the Maple engine, the toolbox calls the Maple functions directly.
Each par argument is a numeric quantity corresponding to a parameter
for function. You can use up to four parameters. The last parameter
specified can be a matrix, usually corresponding to X. The dimensions
of all other parameters depend on the specifications for function. You
can access parameter information for mfun functions in “Syntax and
Definitions of mfun Special Functions” on page 6-129.

MuPAD software evaluates function using 16-digit accuracy. Each
element of the result is a MATLAB numeric quantity. Any singularity
in function is returned as NaN.

Examples Evaluate Fresnel cosine integral:

mfun('FresnelC',0:5)

The result is:

ans =
0 0.7799 0.4883 0.6057 0.4984 0.5636

Evaluate hyperbolic cosine integral:

mfun('Chi',[3*i 0])

ans =
0.1196 + 1.5708i NaN

See Also mfunlist
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Purpose List special functions for use with mfun

Syntax mfunlist

Description mfunlist lists the special mathematical functions for use with the mfun
function. The following tables describe these special functions.

Syntax
and
Definitions
of mfun
Special
Functions

The following conventions are used in the next table, unless otherwise
indicated in the Arguments column.

x, y real argument

z, z1, z2 complex argument

m, n integer argument

MFUN Special Functions

Function
Name Definition mfun Name Arguments

Bernoulli
numbers and
polynomials

Generating functions:

e

e
B x

t
n

xt

t n

n

n−
= ⋅

−

=

∞

∑
1

1

0
( )

!

bernoulli(n)

bernoulli(n,t)
n ≥ 0

0 2< <t π

Bessel
functions

BesselI, BesselJ—Bessel
functions of the first kind.
BesselK, BesselY—Bessel
functions of the second kind.

BesselJ(v,x)

BesselY(v,x)

BesselI(v,x)

BesselK(v,x)

v is real.

Beta function
B x y

x y
x y

( , )
( ) ( )
( )

= ⋅
+

Γ Γ
Γ

Beta(x,y)
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MFUN Special Functions (Continued)

Function
Name Definition mfun Name Arguments

Binomial
coefficients

m
n

m
n m n

⎛
⎝⎜

⎞
⎠⎟
=

−( )
!

! !

= +
+( ) − +
Γ

Γ Γ
( )

( )
m

n m n
1

1 1

binomial(m,n)

Complete
elliptic
integrals

Legendre’s complete elliptic
integrals of the first, second, and
third kind

EllipticK(k)

EllipticE(k)

EllipticPi(a,k)

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Complete
elliptic
integrals with
complementary
modulus

Associated complete elliptic
integrals of the first, second, and
third kind using complementary
modulus

EllipticCK(k)

EllipticCE(k)

EllipticCPi(a,k)

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Complementary
error function
and its iterated
integrals

erfc z e dt erf zt

z

( ) ( )= ⋅ = −−
∞

∫2
1

2



erfc z e z( , )− = ⋅ −1
2 2



erfc n z erfc n t dt
z

( , ) ( , )= −
∞

∫ 1

erfc(z)

erfc(n,z)

n > 0

Dawson’s
integral F x e e dtx t

x

( ) = ⋅− ∫
2 2

0

dawson(x)
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MFUN Special Functions (Continued)

Function
Name Definition mfun Name Arguments

Digamma
function Ψ Γ Γ

Γ
( ) ln( ( ))

( )
( )

x
d
dx

x
x
x

= =
′ Psi(x)

Dilogarithm
integral f x

t
t

dt
x

( )
ln( )=
−∫ 1

1

dilog(x) x > 1

Error function
erf z e dtt

z

( ) = −∫2 2

0

erf(z)

Euler
numbers and
polynomials

Generating function for Euler
numbers:

1

0cosh( ) !t
E

t
nn

n

n
=

=

∞

∑

euler(n)

euler(n,z)

n ≥ 0

t < 
2

Exponential
integrals Ei n z

e

t
dt

zt

n
( , ) =

−∞

∫
1

Ei x PV
e
t

tx

( ) = −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−∞
∫

Ei(n,z)

Ei(x)

n ≥ 0

Real(z) > 0

Fresnel sine
and cosine
integrals

C x t dt
x

( ) cos= ⎛
⎝⎜

⎞
⎠⎟∫ 

2
2

0

S x t dt
x

( ) sin= ⎛
⎝⎜

⎞
⎠⎟∫ 

2
2

0

FresnelC(x)

FresnelS(x)
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MFUN Special Functions (Continued)

Function
Name Definition mfun Name Arguments

Gamma
function Γ( )z t e dtz t= − −

∞

∫ 1

0

GAMMA(z)

Harmonic
function h n

k
n

k

n
( ) ( )= = + +

=
∑ 1

1
1

Ψ γ
harmonic(n) n > 0

Hyperbolic sine
and cosine
integrals

Shi z
t

t
dt

z

( )
sinh( )= ∫

0

Chi z z
t

t
dt

z

( ) ln( )
cosh( )= + + −∫γ 1

0

Shi(z)

Chi(z)

(Generalized)
hypergeometric
function F n d z

n k
n

z

d k
d

k

i

i

k

i

j

i

ii

m
k

( , , )

( )
( )

( )
( )

!

=

+ ⋅

+ ⋅

=

=

=

∞ ∏

∏
∑

Γ
Γ

Γ
Γ

1

1

0

where j and m are the number of
terms in n and d, respectively.

hypergeom(n,d,x)

where

n = [n1,n2,...]

d = [d1,d2,...]

n1,n2,...
are real.

d1,d2,...
are real and
nonnegative.

Incomplete
elliptic
integrals

Legendre’s incomplete elliptic
integrals of the first, second, and
third kind.

EllipticF(x,k)

EllipticE(x,k)

EllipticPi(x,a,k)

0 < x ≤ ∞.

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.
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MFUN Special Functions (Continued)

Function
Name Definition mfun Name Arguments

Incomplete
gamma
function

Γ( , )a z e t dtt a

z

= ⋅− −
∞

∫ 1
GAMMA(z1,z2)

z1 = a
z2 = z

Logarithm of
the gamma
function

lnGAMMA( ) ln( ( ))z z= Γ lnGAMMA(z)

Logarithmic
integral Li x PV

dt
t

Ei x
x

( )
ln

(ln )=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=∫

0

Li(x) x > 1

Polygamma
function Ψ Ψ( ) ( ) ( )n

n
z

d
dz

z=

where Ψ( )z is the Digamma
function.

Psi(n,z) n ≥ 0

Shifted sine
integral Ssi z Si z( ) ( )= − 

2

Ssi(z)

The following orthogonal polynomials are available using mfun. In all
cases, n is a nonnegative integer and x is real.

Orthogonal Polynomials

Polynomial mfun Name Arguments

Chebyshev of the first
and second kind

T(n,x)

U(n,x)
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Orthogonal Polynomials (Continued)

Polynomial mfun Name Arguments

Gegenbauer G(n,a,x) a is a nonrational
algebraic expression
or a rational number
greater than -1/2.

Hermite H(n,x)

Jacobi P(n,a,b,x) a, b are nonrational
algebraic expressions or
rational numbers greater
than -1.

Laguerre L(n,x)

Generalized Laguerre L(n,a,x) a is a nonrational
algebraic expression
or a rational number
greater than -1.

Legendre P(n,x)

Examples
mfun('H',5,10)

ans =
3041200

mfun('dawson',3.2)

ans =
0.1655

Limitations In general, the accuracy of a function will be lower near its roots and
when its arguments are relatively large.
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Running time depends on the specific function and its parameters. In
general, calculations are slower than standard MATLAB calculations.

See Also mfun

References [1] Abramowitz, M. and I.A., Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965.
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Purpose Symbolic matrix elementwise modulus

Syntax C = mod(A, B)

Description C = mod(A, B) for symbolic matrices A and B with integer elements
is the positive remainder in the elementwise division of A by B. For
matrices with polynomial entries, mod(A, B) is applied to the individual
coefficients.

Examples
ten = sym('10');
mod(2^ten, ten^3)

ans =
24

syms x
mod(x^3 - 2*x + 999, 10)

ans =
x^3 + 8*x + 9

See Also quorem
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Purpose Start MuPAD notebook

Syntax mphandle = mupad
mphandle = mupad(file)

Description mphandle = mupad creates a MuPAD notebook, and keeps a handle
(pointer) to the notebook in the variable mphandle. You can use any
variable name you like instead of mphandle.

mphandle = mupad(file) opens the MuPAD notebook or program file
named file, and keeps a handle (pointer) to the notebook or program
file in the variable mphandle. This syntax has the functionality of both
openmn and openmu.

Examples To start a new notebook and define a handle mphandle to the notebook,
enter:

mphandle = mupad;

To open an existing notebook named notebook1.mn located in the
current directory, and define a handle mphandle to the notebook, enter:

mphandle = mupad('notebook1.mn');

See Also getVar, mupadwelcome, openmn, openmu, setVar
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Purpose Launch MuPAD interfaces

Syntax mupadwelcome

Description mupadwelcome brings up a window that enables you to launch various
MuPAD interfaces:

• Notebook, for performing calculations

• Editor, for writing programs and libraries

• Help, in the First Steps pane

It also enables you to access recent MuPAD files or browse for files.

See Also mupad

“Opening Recent Files and Other MuPAD Interfaces” on page 4-13
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Purpose Form a basis for null space of matrix

Syntax Z = null(A)

Description Z = null(A) returns a list of vectors that form the basis for the null
space of a matrix A. The product A*Z is zero. size(Z, 2) is the nullity
of A. If A has full rank, Z is empty.

Examples Find the basis for the null space and the nullity of the magic square of
symbolic numbers. Verify that A*Z is zero:

A = sym(magic(4));
Z = null(A)
nulllityOfA = size(Z, 2)
A*Z

The results are:

Z =
-1
-3
3
1

nulllityOfA =
1

ans =
0
0
0
0

Find the basis for the null space of the matrix B that has full rank:
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B = sym(hilb(3))
Z = null(B)

The result is:

B =
[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

Z =
[ empty sym ]

See Also rank | rref | size | svd
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Purpose Numerator and denominator

Syntax [N,D] = numden(A)

Description [N,D] = numden(A) converts each element of A to a rational form where
the numerator and denominator are relatively prime polynomials
with integer coefficients. A is a symbolic or a numeric matrix. N is
the symbolic matrix of numerators, and D is the symbolic matrix of
denominators.

Examples Find the numerator and denominator of the symbolic number:

[n, d] = numden(sym(4/5))

The result is:

n =
4

d =
5

Find the numerator and denominator of the symbolic expression:

syms x y;
[n,d] = numden(x/y + y/x)

The result is:

n =
x^2 + y^2

d =
x*y

The statements
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syms a b
A = [a, 1/b]
[n,d] = numden(A)

return

A =
[a, 1/b]

n =
[a, 1]

d =
[1, b]
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Purpose Open MuPAD notebook

Syntax nb = openmn(file)

Description nb = openmn(file) opens the MuPAD notebook file, and returns a
handle to the file in nb. nb = mupad(file) accomplishes the same task.

Example To open a notebook named e-e-x.mn in the directory \Documents\Notes
2009b of drive H:, enter

nb = openmn('H:\Documents\Notes 2009b\e-e-x.mn');

See Also mupad, openmu
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Purpose Open MuPAD program file

Syntax nb = openmu(file)

Description nb = openmu(file) opens the MuPAD program file, and returns a
handle to the file in nb. nb = mupad(file) accomplishes the same task.

Example To open a program file named yyx.mu in the directory \Documents\Notes
2009b of drive H:, enter

nb = openmu('H:\Documents\Notes 2009b\yyx.mu');

See Also mupad, openmn
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Purpose Compute characteristic polynomial of matrix

Syntax p = poly(A)
p = poly(A, v)
poly(sym(A))

Description p = poly(A) returns the coefficients of the characteristic polynomial of
a numeric matrix A. For symbolic A, poly(A) returns the characteristic
polynomial of A in terms of the default variable x. If the elements of A
already contain the variable x, the default variable is t. If the elements
of A contain both x and t, the default variable is still t.

p = poly(A, v), for both numeric and symbolic matrices, returns the
characteristic polynomial of A in terms of the variable v.

poly(sym(A)), for numeric A, approximately equals
poly2sym(poly(A)). The approximation is due to roundoff
error.

Examples Compute characteristic polynomials of one of the MATLAB test
matrices:

syms z
A = gallery(3)
p = poly(A)
q = poly(sym(A))
s = poly(A, z)

The results are:

A =
-149 -50 -154
537 180 546
-27 -9 -25

p =
1.0000 -6.0000 11.0000 -6.0000
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q =
x^3 - 6*x^2 + 11*x - 6

s =
z^3 - 6*z^2 + 11*z - 6

Compute the characteristic polynomials of the following symbolic
matrix in terms of the default variable. Also compute the characteristic
polynomials in terms of the specified variable y:

syms x y;
B = x*hilb(3)
a = poly(B)
b = poly(B, y)

The results are:

B =
[ x, x/2, x/3]
[ x/2, x/3, x/4]
[ x/3, x/4, x/5]

a =
t^3 - (23*t^2*x)/15 + (127*t*x^2)/720 - x^3/2160

b =
- x^3/2160 + (127*x^2*y)/720 - (23*x*y^2)/15 + y^3

See Also eig | jordan | poly2sym | solve
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Purpose Polynomial coefficient vector to symbolic polynomial

Syntax r = poly2sym(c)
r = poly2sym(c, v)

Description r = poly2sym(c) returns a symbolic representation of the polynomial
whose coefficients are in the numeric vector c. The default symbolic
variable is x. The variable v can be specified as a second input
argument. If c = [c1 c2 ... cn], r = poly2sym(c) has the form

c x c x cn n
n1

1
2

2− −+ + +...

poly2sym uses sym’s default (rational) conversion mode to convert the
numeric coefficients to symbolic constants. This mode expresses the
symbolic coefficient approximately as a ratio of integers, if sym can find
a simple ratio that approximates the numeric value, otherwise as an
integer multiplied by a power of 2.

r = poly2sym(c, v) is a polynomial in the symbolic variable v with
coefficients from the vector c. If v has a numeric value and sym
expresses the elements of c exactly, eval(poly2sym(c)) returns the
same value as polyval(c, v).

Examples The command

poly2sym([1 3 2])

returns

ans =
x^2 + 3*x + 2

The command

poly2sym([.694228, .333, 6.2832])

returns
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ans =

(6253049924220329*x^2)/9007199254740992 + (333*x)/1000 + 3927/625

The command

poly2sym([1 0 1 -1 2], y)

returns

ans =
y^4 + y^2 - y + 2

See Also sym, sym2poly, polyval in the online MATLAB Function Reference
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Purpose Pretty-print symbolic expressions

Syntax

Description The pretty function prints symbolic output in a format that resembles
typeset mathematics.

Examples The following statements

A = sym(pascal(2))
B = eig(A)
pretty(B)

return

A =
[ 1, 1]
[ 1, 2]

B =
3/2 - 5^(1/2)/2
5^(1/2)/2 + 3/2

+- -+
| 1/2 |
| 3 5 |
| - - ---- |
| 2 2 |
| |
| 1/2 |
| 5 3 |
| ---- + - |
| 2 2 |
+- -+

6-149



quorem

Purpose Symbolic matrix elementwise quotient and remainder

Syntax [Q, R] = quorem(A, B)

Description [Q, R] = quorem(A, B) for symbolic matrices A and B with integer or
polynomial elements does elementwise division of A by B and returns
quotient Q and remainder R so that A = Q.*B+R. For polynomials,
quorem(A,B,x) uses variable x instead of symvar(A,1) or symvar(B,1).

Example
syms x
p = x^3 - 2*x + 5;
[q, r] = quorem(x^5, p)

q =
x^2 + 2

r =
- 5*x^2 + 4*x - 10

[q, r] = quorem(10^5, subs(p,'10'))

q = 101
r = 515

See Also mod
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Purpose Compute the rank of symbolic matrix

Syntax rank(A)

Description rank(A) computes the rank of the symbolic matrix A.

Examples Compute the rank of the following numeric matrix:

B = magic(4);
rank(B)

The result is:

ans =
3

Compute the rank of the following symbolic matrix:

syms a b c d
A = [a b;c d];
rank(A)

The result is:

ans =
2

See Also eig | null | rref | size
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Purpose Real part of a complex symbolic number

Syntax real(Z)

Description real(Z) is the real part of a symbolic Z.

See Also conj, imag

6-152



reset

Purpose Close MuPAD engine

Syntax reset(symengine)

Description reset(symengine) closes the MuPAD engine associated with the
MATLAB workspace, and resets all its assumptions. Immediately
before or after executing reset(symengine) you should clear all
symbolic objects in the MATLAB workspace.

See Also symengine
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Purpose Symbolic matrix elementwise round

Syntax Y = round(X)

Description Y = round(X) rounds the elements of X to the nearest integers. Values
halfway between two integers are rounded away from zero.

Example
x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[ -2, -3, -3, -2, -1/2]

See Also floor, ceil, fix, frac

6-154



rref

Purpose Compute reduced row echelon form of matrix

Syntax rref(A)

Description rref(A) computes the reduced row echelon form of the symbolic matrix
A. If the elements of a matrix contain free symbolic variables, rref
regards the matrix as nonzero.

Examples Compute the reduced row echelon form of the magic square matrix:

rref(sym(magic(4)))

The result is:

ans =
[ 1, 0, 0, 1]
[ 0, 1, 0, 3]
[ 0, 0, 1, -3]
[ 0, 0, 0, 0]

Compute the reduced row echelon form of the following symbolic matrix:

syms a b c;
A = [a b c; b c a; a + b, b + c, c + a];
rref(A)

The result is:

ans =
[ 1, 0, -(a*b - c^2)/(a*c - b^2)]
[ 0, 1, -(b*c - a^2)/(a*c - b^2)]
[ 0, 0, 0]

See Also eig | jordan | rank | size
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Purpose Interactive evaluation of Riemann sums

Syntax rsums(f)
rsums(f, a, b)
rsums(f, [a, b])

Description rsums(f) interactively approximates the integral of f(x) by Riemann
sums from 0 to 1. rsums(f) displays a graph of f(x). You can then adjust
the number of terms taken in the Riemann sum by using the slider
below the graph. The number of terms available ranges from 2 to 128. f
can be a string or a symbolic expression.

rsums(f, a, b) and rsums(f, [a, b]) approximates the integral
from a to b.

Examples Both rsums('exp(-5*x^2)') and rsums exp(-5*x^2) create the
following plot.
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Purpose Assign variable in MuPAD notebook

Syntax setVar(nb, y)
setVar(nb, 'v', y)

Description setVar(nb, y) assigns the symbolic expression y in the MATLAB
workspace to the variable y in the MuPAD notebook nb.

setVar(nb, 'v', y) assigns the symbolic expression y in the MATLAB
workspace to the variable v in the MuPAD notebook nb.

Examples
mpnb = mupad;
syms x;
y = exp(-x);
setVar(mpnb,y)
setVar(mpnb,'z',sin(y))

After executing these statements, the MuPAD engine associated with
the mpnb notebook contains the variables y, with value exp(-x), and z,
with value sin(exp(-x)).

See Also getVar, mupad
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Purpose Search for simplest form of symbolic expression

Syntax r = simple(S)
[r, how] = simple(S)

Description r = simple(S) tries several different algebraic simplifications of the
symbolic expression S, displays any that shorten the length of S’s
representation, and returns the shortest. S is a sym. If S is a matrix,
the result represents the shortest representation of the entire matrix,
which is not necessarily the shortest representation of each individual
element. If no return output is given, simple(S) displays all possible
representations and returns the shortest.

[r, how] = simple(S) does not display intermediate simplifications,
but returns the shortest found, as well as a string describing the
particular simplification. r is a sym. how is a string.

Examples Simplify the expressions:

syms x;
f = cos(x)^2 + sin(x)^2;
f = simple(f)
g = cos(3*acos(x));
g = simple(g)

The results are:

f =
1

g =
4*x^3 - 3*x

Simplify the expressions displaying all possible simplifications:

syms x;
f = cos(x) + i*sin(x);
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simple(f)

The result is:

simplify:

cos(x) + i*sin(x)

radsimp:

cos(x) + i*sin(x)

simplify(100):

cos(x) + i*sin(x)

combine(sincos):

cos(x) + i*sin(x)

combine(sinhcosh):

cos(x) + i*sin(x)

combine(ln):

cos(x) + i*sin(x)

factor:

cos(x) + i*sin(x)

expand:

cos(x) + i*sin(x)

combine:

cos(x) + i*sin(x)

rewrite(exp):

exp(i*x)

rewrite(sincos):

cos(x) + i*sin(x)
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rewrite(sinhcosh):

cosh(-i*x) - sinh(-i*x)

rewrite(tan):

(2*i*tan(x/2))/(tan(x/2)^2 + 1) - (tan(x/2)^2 - 1)/(tan(x/2)^2 + 1)

mwcos2sin:

- 2*sin(x/2)^2 + i*sin(x) + 1

collect(x):

cos(x) + i*sin(x)

ans =

exp(i*x)

Simplify the expression and display the simplification method:

syms x;
f = (x + 1)*x*(x - 1);
[f, how] = simple(f)

f =
x^3 - x

how =
simplify(100)

See Also collect, expand, factor, horner, simplify
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Purpose Symbolic simplification

Syntax R = simplify(S)
R = simplify(S, n)

Description R = simplify(S) simplifies each element of the symbolic matrix S
using MuPAD simplification rules.

R = simplify(S, n) uses the positive integer n to control how many
steps of simplification the simplify function attempts. The default
value (without n) is n = 100.

Examples Simplify the trigonometric expression:

syms x;
simplify(sin(x)^2 + cos(x)^2)

The result is:

ans =
1

Simplify the expression:

syms a b c;
simplify(exp(c*log(sqrt(a+b))))

The result is:

ans =
(a + b)^(c/2)

Simplify the expressions from the list:

S = [(x^2 + 5*x + 6)/(x + 2), sqrt(16)];
R = simplify(S)

The result is:
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R =
[ x + 3, 4]

See Also collect, expand, factor, horner, simple
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Purpose Convert symbolic matrix to single precision

Syntax single(S)

Description single(S) converts the symbolic matrix S to a matrix of single-precision
floating-point numbers. S must not contain any symbolic variables,
except 'eps'.

See Also sym, vpa, double
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Purpose Sine integral

Syntax Y = sinint(X)

Description Y = sinint(X) evaluates the sine integral function at the elements
of X, a numeric matrix, or a symbolic matrix. The result is a numeric
matrix. The sine integral function is defined by

Si x
t

t
dt

x

( )
sin= ∫

0

Examples Evaluate sine integral for the elements of the matrix:

sinint([pi 0;-2.2 exp(3)])

ans =
1.8519 0

-1.6876 1.5522

The statement

sinint(1.2)

returns

ans =
1.1080

The statement

syms x;
diff(sinint(x))

returns

ans =
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sin(x)/x

See Also cosint
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Purpose Symbolic matrix dimensions

Syntax d = size(A)
[m, n] = size(A)
d = size(A, n)

Description Suppose A is an m-by-n symbolic or numeric matrix. The statement
d = size(A) returns a numeric vector with two integer components,
d = [m,n].

The multiple assignment statement [m, n] = size(A) returns the two
integers in two separate variables.

The statement d = size(A, n) returns the length of the dimension
specified by the scalar n. For example, size(A,1) is the number of rows
of A and size(A,2) is the number of columns of A.

Examples The statements

syms a b c d
A = [a b c ; a b d; d c b; c b a];
d = size(A)
r = size(A, 2)

return

d =
4 3

r =
3

See Also length, ndims in the online MATLAB Function Reference
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Purpose Symbolic solution of algebraic equations

Syntax solve(eq)
solve(eq, var)
solve(eq1, eq2, ..., eqn)
g = solve(eq1, eq2, ..., eqn, var1, var2, ..., varn)

Description Single Equation/Expression

The input to solve can be either symbolic expressions or strings. If
eq is a symbolic expression (x^2 - 2*x + 1) or a string that does not
contain an equal sign ('x^2 - 2*x + 1'), then solve(eq) solves the
equation eq = 0 for its default variable (as determined by symvar).

solve(eq, var) solves the equation eq (or eq = 0 in the two cases
cited above) for the variable var.

System of Equations

The inputs are either symbolic expressions or strings specifying
equations. solve(eq1, eq2, ..., eqn) or solves the system of
equations implied by eq1,eq2,...,eqn in the n variables determined
by applying symvar to the system.

g = solve(eq1, eq2, ..., eqn, var1, var2, ..., varn) finds the
zeros for the system of equations for the variables specified as inputs.

Three different types of output are possible. For one equation and one
output, the resulting solution is returned with multiple solutions for a
nonlinear equation. For a system of equations and an equal number
of outputs, the results are sorted alphabetically and assigned to the
outputs. For a system of equations and a single output, a structure
containing the solutions is returned.

For both a single equation and a system of equations, numeric solutions
are returned if symbolic solutions cannot be determined.

Examples Solve the quadratic equation:

6-167



solve

syms a b c x;
solve('a*x^2 + b*x + c')

The result is:

ans =
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)

-(b - (b^2 - 4*a*c)^(1/2))/(2*a)

Solve the quadratic equation for the variable b:

syms a b c x;
solve('a*x^2 + b*x + c','b')

The result is:

ans =
-(a*x^2 + c)/x

Solve the system of equations:

syms x;
S = solve('x + y = 1','x - 11*y = 5');
S = [S.x S.y]

The result is:

S =
[ 4/3, -1/3]

The statement

syms a u v;
A = solve('a*u^2 + v^2', 'u - v = 1', 'a^2 - 5*a + 6')

returns

A =
a: [4x1 sym]
u: [4x1 sym]
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v: [4x1 sym]

To see the elements of A, enter:

Aa = A.a
Au = A.u
Av = A.v

Aa =
3
2
2
3

Au =
(3^(1/2)*i)/4 + 1/4
(2^(1/2)*i)/3 + 1/3
1/3 - (2^(1/2)*i)/3
1/4 - (3^(1/2)*i)/4

Av =
(3^(1/2)*i)/4 - 3/4
(2^(1/2)*i)/3 - 2/3

- (2^(1/2)*i)/3 - 2/3
- (3^(1/2)*i)/4 - 3/4

See Also Arithmetic Operations, dsolve, symvar

6-169



sort

Purpose Sort symbolic vectors or polynomials

Syntax Y = sort(v)
Y = sort(p)

Description Y = sort(v) sorts the elements of a symbolic vector v in numerical or
lexicographic order.

Y = sort(p) sorts the terms in a polynomial p in order of decreasing
powers.

Examples Sort the elements of a symbolic matrices and vectors:

syms a b c d e;
sort(sym(magic(3)))
sort([a c e b d])

The results are:

ans =
[ 1, 2, 3, 4, 5, 6, 7, 8, 9]

ans =
[ a, b, c, d, e]

Sort the terms of the polynomial:

syms a b c d e x;
sort([a c e b d]*x.^(0:4).')

The result is:

ans =
d*x^4 + b*x^3 + e*x^2 + c*x + a

See Also sym2poly, coeffs
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Purpose Rewrite symbolic expression in terms of common subexpressions

Syntax [Y, SIGMA] = subexpr(X, SIGMA)
[Y, SIGMA] = subexpr(X, 'SIGMA')

Description [Y, SIGMA] = subexpr(X, SIGMA) or [Y, SIGMA] = subexpr(X,
'SIGMA') rewrites the symbolic expression X in terms of its common
subexpressions.

Examples The statements

h = solve('a*x^3+b*x^2+c*x+d = 0');
[r,s] = subexpr(h,'s')

return the rewritten expression for t in r in terms of a common
subexpression, which is returned in s:

r =

s^(1/3) - b/(3*a) - (c/(3*a) - b^2/(9*a^2))/s^(1/3)

(c/(3*a) - b^2/(9*a^2))/(2*s^(1/3)) - s^(1/3)/2 - b/(3*a) - (3^(1/2)*i*(s^(1/3) + ...

(c/(3*a) - b^2/(9*a^2))/s^(1/3)))/2

(c/(3*a) - b^2/(9*a^2))/(2*s^(1/3)) - s^(1/3)/2 - b/(3*a) + (3^(1/2)*i*(s^(1/3) + ...

(c/(3*a) - b^2/(9*a^2))/s^(1/3)))/2

s =

((d/(2*a) + b^3/(27*a^3) - (b*c)/(6*a^2))^2 + (c/(3*a) - b^2/(9*a^2))^3)^(1/2) - ...

b^3/(27*a^3) - d/(2*a) + (b*c)/(6*a^2)

See Also pretty, simple, subs
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Purpose Symbolic substitution in symbolic expression or matrix

Syntax R = subs(S)
R = subs(S, new)
R = subs(S, old, new)

Description R = subs(S) replaces all occurrences of variables in the symbolic
expression S with values obtained from the calling function, or the
MATLAB workspace.

R = subs(S, new) replaces the default symbolic variable in S with new.

R = subs(S, old, new) replaces old with new in the symbolic
expression S. old is a symbolic variable or a string representing a
variable name. new is a symbolic or numeric variable or expression.
That is, R = subs(S,old,new) evaluates S at old = new. The
substitution is first attempted as a MATLAB expression resulting in
the computation being done in double precision arithmetic if all the
values in new are double precision. Convert the new values to sym to
ensure symbolic or variable precision arithmetic.

If old and new are vectors or cell arrays of the same size and type,
each element of old is replaced by the corresponding element of new.
If S and old are scalars and new is an array or cell array, the scalars
are expanded to produce an array result. If new is a cell array of
numeric matrices, the substitutions are performed elementwise (i.e.,
subs(x*y,{x,y},{A,B}) returns A.*B when A and B are numeric).

If subs(s,old,new) does not change s, subs(s,new,old) is tried. This
provides backwards compatibility with previous versions and eliminates
the need to remember the order of the arguments. subs(s,old,new,0)
does not switch the arguments if s does not change.
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Note If A is a matrix, the command subs(S, x, A) replaces all
occurrences of the variable x in the symbolic expression S with the
matrix A, and replaces the constant term in S with the constant times a
matrix of all ones. To evaluate S in the matrix sense, use the command
polyvalm(sym2poly(S), A), which replaces the constant term with the
constant times an identity matrix.

Examples Single Input

Suppose a = 980 and C2 = 3 exist in the workspace.

The statement

y = dsolve('Dy = -a*y')

produces

y =
C2/exp(a*t)

Then the statements

a = 980; C2 = 3; subs(y)

produce

ans =
3/exp(980*t)

Single Substitution

syms a b;
subs(a + b, a, 4)

returns

ans =
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b + 4

Multiple Substitutions

syms a b;
subs(cos(a) + sin(b), {a, b}, {sym('alpha'), 2})

returns

ans =
sin(2) + cos(alpha)

Scalar Expansion Case

syms t;
subs(exp(a*t), 'a', -magic(2))

returns

ans =
[ 1/exp(t), 1/exp(3*t)]
[ 1/exp(4*t), 1/exp(2*t)]

Multiple Scalar Expansion

syms x y;
subs(x*y, {x, y}, {[0 1; -1 0], [1 -1; -2 1]})

returns

ans =
0 -1
2 0

See Also simplify, subexpr

6-174



svd

Purpose Compute singular value decomposition of symbolic matrix

Syntax sigma = svd(A)
sigma = svd(vpa(A))
[U, S, V] = svd(A)
[U, S, V] = svd(vpa(A))

Description sigma = svd(A) returns a symbolic vector containing the singular
values of a symbolic matrix A. With symbolic inputs, svd does not accept
complex values as inputs.

sigma = svd(vpa(A)) returns a vector with the numeric singular
values using variable precision arithmetic.

[U, S, V] = svd(A) and [U, S, V] = svd(vpa(A)) return numeric
unitary matrices U and V with the columns containing the singular
vectors and a diagonal matrix S containing the singular values. The
matrices satisfy A = U*S*V'. The svd command does not compute
symbolic singular vectors. With multiple outputs, svd does not accept
complex values as inputs.

Examples Compute the symbolic and numeric singular values and the numeric
singular vectors of the following magic square:

digits(5)
A = sym(magic(4));
svd(A)
svd(vpa(A))
[U, S, V] = svd(A)

The results are:

ans =
0

2*5^(1/2)
8*5^(1/2)

34

6-175



svd

ans =
34.0

17.889
4.4721

2.8024*10^(-7)

U =
[ 0.5, 0.67082, 0.5, 0.22361]
[ 0.5, -0.22361, -0.5, 0.67082]
[ 0.5, 0.22361, -0.5, -0.67082]
[ 0.5, -0.67082, 0.5, -0.22361]

S =
[ 34.0, 0, 0, 0]
[ 0, 17.889, 0, 0]
[ 0, 0, 4.4721, 0]
[ 0, 0, 0, 0]

V =
[ 0.5, 0.5, 0.67082, 0.22361]
[ 0.5, -0.5, -0.22361, 0.67082]
[ 0.5, -0.5, 0.22361, -0.67082]
[ 0.5, 0.5, -0.67082, -0.22361]

See Also digits | eig | inv | vpa
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Purpose Symbolic numbers, variables, and objects

Syntax S = sym(A)
x = sym('x')
x = sym('x', 'real')
k = sym('k', 'positive')
x = sym('x', 'clear')
S = sym(A, flag)

Description S = sym(A) constructs an object S, of class 'sym', from A. If the input
argument is a string, the result is a symbolic number or variable. If the
input argument is a numeric scalar or matrix, the result is a symbolic
representation of the given numeric values.

x = sym('x') creates the symbolic variable with name 'x' and stores
the result in x.

x = sym('x', 'real') also assumes that x is real, so that conj(x) is
equal to x. alpha = sym('alpha') and r = sym('Rho','real') are
other examples.

Similarly, k = sym('k', 'positive') makes k a positive (real)
variable.

x = sym('x', 'clear') makes x a purely formal variable with no
additional properties (i.e., ensures that x is neither real nor positive).
See also the reference pages on syms. For compatibility with previous
versions of the software, x = sym('x','unreal') has exactly the same
effect as x = sym('x','clear').

Statements like pi = sym('pi') and delta = sym('1/10') create
symbolic numbers that avoid the floating-point approximations inherent
in the values of pi and 1/10. The pi created in this way temporarily
replaces the built-in numeric function with the same name.

S = sym(A, flag) where flag is one of 'r', 'd', 'e', or 'f', converts a
numeric scalar or matrix to symbolic form. The technique for converting
floating-point numbers is specified by the optional second argument,
which can be 'f', 'r', 'e' or 'd'. The default is 'r'.
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'f' stands for “floating-point.” All values are represented in the form
N*2^e or -N*2^e , where N and e are integers, N ≥ 0. For example,
sym(1/10,'f') is 3602879701896397/36028797018963968 .

'r' stands for “rational.” Floating-point numbers obtained by
evaluating expressions of the form p/q, p*pi/q, sqrt(p), 2^q, and 10^q
for modest sized integers p and q are converted to the corresponding
symbolic form. This effectively compensates for the roundoff error
involved in the original evaluation, but may not represent the
floating-point value precisely. If no simple rational approximation can
be found, an expression of the form p*2^q with large integers p and q
reproduces the floating-point value exactly. For example, sym(4/3,'r')
is '4/3', but sym(1+sqrt(5),'r') is 7286977268806824*2^(-51).

'e' stands for “estimate error.” The 'r' form is supplemented by a term
involving the variable 'eps', which estimates the difference between
the theoretical rational expression and its actual floating-point value.
For example, sym(3*pi/4,'e') is 3*pi/4*(1+3143276*eps/65).

'd' stands for “decimal.” The number of digits is taken from the
current setting of digits used by vpa. Fewer than 16 digits loses
some accuracy, while more than 16 digits may not be warranted. For
example, with digits(10), sym(4/3,'d') is 1.333333333, while with
digits digits(20), sym(4/3,'d') is 1.3333333333333332593, which
does not end in a string of 3s, but is an accurate decimal representation
of the floating-point number nearest to 4/3.

See Also digits, double, findsym, reset, syms, symvar

eps in the online MATLAB Function Reference
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Purpose Choose symbolic engine

Syntax symengine
s = symengine

Description symengine brings up a GUI for choosing the MATLAB symbolic engine:
a MuPAD engine or a Maple engine.

s = symengine returns the currently active symbolic engine.

Example symengine

brings up the following GUI:

To see which symbolic computation engine is currently active, enter:

s = symengine

The result is:

s =
MuPAD symbolic engine

See Also “Choosing a Maple or MuPAD Engine” on page 4-34
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Purpose Shortcut for constructing symbolic objects

Syntax syms arg1 arg2 ...
syms arg1 arg2 ... real
syms arg1 arg2 ... clear
syms arg1 arg2 ... positive

Description syms arg1 arg2 ... is a shortcut for

arg1 = sym('arg1');
arg2 = sym('arg2'); ...

syms arg1 arg2 ... real is a shortcut for

arg1 = sym('arg1','real');
arg2 = sym('arg2','real'); ...

syms arg1 arg2 ... clear is a shortcut for

arg1 = sym('arg1','clear');
arg2 = sym('arg2','clear'); ...

syms arg1 arg2 ... positive is a shortcut for

arg1 = sym('arg1','positive');
arg2 = sym('arg2','positive'); ...

Each input argument must begin with a letter and can contain only
alphanumeric characters. For compatibility with previous versions
of the software, syms arg1 arg2 ... unreal has exactly the same
effect as syms arg1 arg2 ... clear.

In functions and scripts, do not use the syms command to create
symbolic variables with the same names as MATLAB functions. For
these names MATLAB does not create symbolic variables, but keeps
the names assigned to the functions. If you want to create a symbolic
variable with the same name as some MATLAB function inside a
function or a script, use the sym command. For example:
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alpha = sym('alpha')

Examples syms x y real is equivalent to

x = sym('x','real');
y = sym('y','real');

To clear the symbolic objects x and y of 'real' status, type

syms x y clear

Note that clear x will not clear the symbolic object of its 'real' status.
You can achieve this using

• syms x clear to remove the 'real' status from x without affecting
any other symbolic variables.

• reset(symengine) resets the MuPAD engine.

• clear all clears all objects in the MATLAB workspace and resets
the MuPAD engine.

See Also findsym, reset, sym, symvar

“Clearing Assumptions and Resetting the Symbolic Engine” on page
4-29
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Purpose Symbolic-to-numeric polynomial conversion

Syntax c = sym2poly(s)

Description c = sym2poly(s) returns a row vector containing the numeric
coefficients of a symbolic polynomial. The coefficients are ordered in
descending powers of the polynomial’s independent variable. In other
words, the vector’s first entry contains the coefficient of the polynomial’s
highest term; the second entry, the coefficient of the second highest
term; and so on.

Examples The command

syms x u v
sym2poly(x^3 - 2*x - 5)

returns

ans =
1 0 -2 -5

The command

sym2poly(u^4 - 3 + 5*u^2)

returns

ans =
1 0 5 0 -3

and the command

sym2poly(sin(pi/6)*v + exp(1)*v^2)

returns

ans =
2.7183 0.5000 0
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See Also poly2sym, subs, sym, polyval in the online MATLAB Function
Reference
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Purpose Evaluate symbolic sum of series

Syntax r = symsum(expr)
r = symsum(expr, v)
r = symsum(expr, a, b)
r = symsum(expr, v, a, b)

Description r = symsum(expr) evaluates the sum of the symbolic expression expr
with respect to the default symbolic variable defaultVar determined by
symvar. The value of the default variable changes from 0 to defaultVar
- 1.

r = symsum(expr, v) evaluates the sum of the symbolic expression
expr with respect to the symbolic variable v. The value of the variable v
changes from 0 to v - 1.

r = symsum(expr, a, b) evaluates the sum of the symbolic expression
expr with respect to the default symbolic variable defaultVar
determined by symvar. The value of the default variable changes from a
to b.

r = symsum(expr, v, a, b) evaluates the sum of the symbolic
expression expr with respect to the symbolic variable v. The value of
the default variable changes from a to b.

Examples Evaluate the sum of the following symbolic expressions k and k^2:

syms k
symsum(k)
symsum(k^2)

The results are

ans =
k^2/2 - k/2

ans =
k^3/3 - k^2/2 + k/6

6-184



symsum

Evaluate the sum of the following expression specifying the limits:

symsum(k^2, 0, 10)

The result is

ans =
385

Evaluate the sum of the following multivariable expression with respect
to k:

syms x;
symsum(x^k/sym('k!'), k, 0, inf)

The result is

ans =
exp(x)

See Also int | syms | symvar

How To • “Symbolic Summation” on page 3-19
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Purpose Find symbolic variables in symbolic expression or matrix

Syntax symvar(s)
symvar(s,n)

Description symvar(s) returns a vector containing all the symbolic variables in s.
The variables are returned in the alphabetical order with uppercase
letters preceding lowercase letters. If there are no symbolic variables in
s, then symvar returns the empty vector. symvar does not consider the
constants pi, i, and j to be variables.

symvar(s,n) returns a vector containing the n symbolic variables in s
that are alphabetically closest to 'x':

1 The variables are sorted by the first letter in their names. The
ordering is x y w z v u ... a X Y W Z V U ... A. The name of a symbolic
variable cannot begin with a number.

2 For all subsequent letters, the ordering is alphabetical,
with all uppercase letters having precedence over lowercase:
0 1 ... 9 A B ... Z a b ...z.

Note symvar(s) can return variables in different order than
symvar(s,n).

Examples
syms wa wb wx yx ya yb
f = wa + wb + wx + ya + yb + yx;
symvar(f)

The result is:

ans =
[ wa, wb, wx, ya, yb, yx]

syms x y z a b
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w = x^2/(sin(3*y - b));
symvar(w)

The result is:

ans =
[ b, x, y]

symvar(w, 3)

The result is:

ans =
[ x, y, b]

symvar(s,1) returns the variable closest to x. When performing
differentiation, integration, substitution or solving equations, MATLAB
uses this variable as a default variable.

syms v z
g = v + z;
symvar(g, 1)

The result is:

ans =
z

syms aaa aab
g = aaa + aab;
symvar(g, 1)

The result is:

ans =
aaa

syms X1 x2 xa xb
g = X1 + x2 + xa + xb;
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symvar(g, 1)

The result is:

ans =
x2

See Also findsym, sym, syms
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Purpose Taylor series expansion

Syntax taylor(f)
taylor(f, n)
taylor(f, a)
taylor(f, n, v)
taylor(f, n, v, a)

Description taylor(f) returns the fifth order Maclaurin polynomial approximation
to f.

taylor(f, n) returns the (n-1)-order Maclaurin polynomial
approximation to f. Here n is a positive integer.

taylor(f, a) returns the fifth order Taylor series approximation to f
about point a. Here a is a real number. If a is a positive integer or if you
want to change the expansion order, use taylor(f,n,a) to specify the
base point and the expansion order.

taylor(f, n, v) returns the (n-1)-order Maclaurin polynomial
approximation to f, where f is a symbolic expression representing a
function and v specifies the independent variable in the expression. v
can be a string or symbolic variable.

taylor(f, n, v, a) returns the Taylor series approximation to f
about a. The argument a can be a numeric value, a symbol, or a string
representing a numeric value or an unknown. If a is a symbol or a
string, do not omit v.

If a is neither an integer nor a symbol or a string, you can supply the
arguments n, v, and a in any order. taylor determines the purpose of
the arguments from their position and type.

You also can omit any of the arguments n, v, and a. If you do not specify
v, taylor usessymvar to determine the function’s independent variable.
n defaults to 6, and a defaults to 0.

The following expression present the Taylor series for an analytic
function f(x) about the base point x=a:
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f x x a
f a
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m
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( )
!

( )
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∑
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Examples The following table describes the various uses of the taylor command
and its relation to Taylor and Maclaurin series. Before using the taylor
command, define the function you want to expand. For example:

syms x
f = exp(x^2);

Mathematical Operation MATLAB Operation

x
f

m
m

m

m

=
∑ ⋅

0

5 0( ) ( )
!

taylor(f)

x
f

m
m

m

n m

=

−

∑ ⋅
0

1 0( ) ( )
!

n is a positive integer

taylor(f,n)

n is a positive integer.

( )
( )
!

( )
x a

f a
m

m

m

m
− ⋅

=
∑

0

5

a is a real number

taylor(f,a)

a is a real number.

( )
( )
!

( )
x a

f a
m

m

m

n m
− ⋅

=

−

∑
0

1

n is a positive integer and a is real.
Also, a can be a positive integer.

taylor(f,n,a)

a is real and n is a positive
integer.

In the case where f is a function of two or more variables
(f=f(x,y,...)), there is an additional parameter that allows you to
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select the variable for the Taylor expansion. Look at this table for
illustrations of this feature.

Mathematical Operation MATLAB Operation

y
m y

f x y
m

m

n

m
y

!
( , )

= =
∑ ⋅ ∂

∂0

5

0

taylor(f,y)

y
m y

f x y
m

m

n m

m
y

!
( , )

=

−

=
∑ ⋅ ∂

∂0

1

0

n is a positive integer

taylor(f,y,n) or
taylor(f,n,y)

n is a positive integer.

( )
!

( , )
y a

m y
f x y

m

m

m

m
y a

− ⋅ ∂
∂= =

∑
0

5

a is real

taylor(f,y,a)

a is real.

( )
!

( , )
y a

m y
f x y

m

m

n m

m
y a

− ⋅ ∂
∂=

−

=
∑

0

1

a is real and n is a positive integer

taylor(f,n,y,a)

a is real and n is a positive
integer.

See Also symvar, taylortool
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Purpose Taylor series calculator

Syntax taylortool
taylortool('f')

Description taylortool initiates a GUI that graphs a function against the Nth
partial sum of its Taylor series about a base point x = a. The default
function, value of N, base point, and interval of computation for
taylortool are f = x*cos(x), N = 7, a = 0, and [-2*pi,2*pi],
respectively.

taylortool('f') initiates the GUI for the given expression f.

Examples
taylortool('sin(tan(x)) - tan(sin(x))')
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See Also funtool, rsums
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Purpose Return lower triangular part of symbolic matrix

Syntax tril(A)
tril(A, k)

Description tril(A) returns a triangular matrix that retains the lower part of the
matrix A. The upper triangle of the resulting matrix is padded with
zeros.

tril(A, k) returns a matrix that retains the elements of A on and
below the k-th diagonal. The elements above the k-th diagonal equal
to zero. The values k = 0, k > 0, and k < 0 correspond to the main,
superdiagonals, and subdiagonals, respectively.

Examples Display the matrix retaining only the lower triangle of the original
symbolic matrix:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A)

The result is:

ans =
[ a, 0, 0]
[ 1, 2, 0]
[ a + 1, b + 2, c + 3]

Display the matrix that retains the elements of the original symbolic
matrix on and below the first superdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A, 1)

The result is:
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ans =
[ a, b, 0]
[ 1, 2, 3]
[ a + 1, b + 2, c + 3]

Display the matrix that retains the elements of the original symbolic
matrix on and below the first subdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A, -1)

The result is:

ans =
[ 0, 0, 0]
[ 1, 0, 0]
[ a + 1, b + 2, 0]

See Also diag | triu
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Purpose Return upper triangular part of symbolic matrix

Syntax triu(A)
triu(A, k)

Description triu(A) returns a triangular matrix that retains the upper part of the
matrix A. The lower triangle of the resulting matrix is padded with
zeros.

triu(A, k) returns a matrix that retains the elements of A on and
above the k-th diagonal. The elements below the k-th diagonal equal
to zero. The values k = 0, k > 0, and k < 0 correspond to the main,
superdiagonals, and subdiagonals, respectively.

Examples Display the matrix retaining only the upper triangle of the original
symbolic matrix:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A)

The result is:

ans =
[ a, b, c]
[ 0, 2, 3]
[ 0, 0, c + 3]

Display the matrix that retains the elements of the original symbolic
matrix on and above the first superdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A, 1)

The result is:
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ans =
[ 0, b, c]
[ 0, 0, 3]
[ 0, 0, 0]

Display the matrix that retains the elements of the original symbolic
matrix on and above the first subdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A, -1)

The result is:

ans =
[ a, b, c]
[ 1, 2, 3]
[ 0, b + 2, c + 3]

See Also diag | tril
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Purpose Convert symbolic matrix to unsigned integers

Syntax uint8(S)
uint16(S)
uint32(S)
uint64(S)

Description uint8(S) converts a symbolic matrix S to a matrix of unsigned 8-bit
integers.

uint16(S) converts S to a matrix of unsigned 16-bit integers.

uint32(S) converts S to a matrix of unsigned 32-bit integers.

uint64(S) converts S to a matrix of unsigned 64-bit integers.

Note The output of uint8, uint16, uint32, and uint64 does not have
type symbolic.

The following table summarizes the output of these four functions.

Function Output Range Output Type
Bytes per
Element

Output
Class

uint8 0 to 255 Unsigned 8-bit
integer

1 uint8

uint16 0 to 65,535 Unsigned 16-bit
integer

2 uint16

uint32 0 to 4,294,967,295 Unsigned 32-bit
integer

4 uint32

uint64 0 to 18,446,744,073,709,
551,615

Unsigned 64-bit
integer

8 uint64

See Also sym, vpa, single, double, int8, int16, int32, int64
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Purpose Find unique elements of symbolic matrices or their numeric
approximations

Syntax unique(A)
unique(vpa(A))

Description unique(A) for the symbolic matrix A returns the same values as in A,
but with no repetitions. The unique command also sorts the elements
of the resulting vector alphabetically. If the resulting vector contains
symbolic numbers, the command sorts them in ascending order.

unique(vpa(A)) for the symbolic matrix A returns the numeric
approximations of the elements of A, but with no repetitions. The
unique command also sorts the elements of the resulting vector in
ascending order.

Examples Sort the elements of a symbolic vector excluding duplicates:

syms a b c d e x;
unique([a b c 5 2 b c d 3 b e x x])

The result is:

ans =
[ 2, 3, 5, a, b, c, d, e, x]

Sort the elements of the symbolic Hilbert matrix:

H = sym(hilb(5));
unique(H)

The result is a column vector of unique elements:

ans =
1/9
1/8
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1/7
1/6
1/5
1/4
1/3
1/2

1

Sort the numeric approximations of the elements of the symbolic
Hilbert matrix:

H = sym(hilb(5));
unique(vpa(H))

The result is:

ans =
0.11111111111111111111111111111111

0.125
0.14285714285714285714285714285714
0.16666666666666666666666666666667

0.2
0.25

0.33333333333333333333333333333333
0.5
1.0

See Also sort
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Purpose Variable precision arithmetic

Syntax R = vpa(A)
R = vpa(A, d)

Description R = vpa(A) uses variable-precision arithmetic (VPA) to compute each
element of A to d decimal digits of accuracy, where d is the current
setting of digits. Each element of the result is a symbolic expression.

R = vpa(A, d) uses d digits, instead of the current setting of digits.

Examples The statements

digits(25)
q = vpa(sin(sym('pi')/6))
p = vpa(pi)
w = vpa('(1+sqrt(5))/2')

return

q =
0.5

p =
3.141592653589793238462643

w =
1.618033988749894848204587

vpa pi 75 computes π to 75 digits.

The statements

A = vpa(hilb(2),25)
B = vpa(hilb(2),5)

return
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A =
[ 1.0, 0.5]
[ 0.5, 0.3333333333333333333333333]

B =
[ 1.0, 0.5]
[ 0.5, 0.33333]

See Also digits, double
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Purpose Compute the Riemann zeta function

Syntax Y = zeta(X)
Y = zeta(n, X)

Description Y = zeta(X) evaluates the zeta function at the elements of X, a numeric
matrix, or a symbolic matrix. The zeta function is defined by

 ( )w
kw

k

=
=

∞

∑ 1

1

Y = zeta(n, X) returns the n-th derivative of zeta(X).

Examples Compute the Riemann zeta function for the number:

zeta(1.5)

The result is:

ans =
2.6124

Compute the Riemann zeta function for the matrix:

zeta(1.2:0.1:2.1)

The result is:

ans =
Columns 1 through 6

5.5916 3.9319 3.1055 2.6124 2.2858 2.0543

Columns 7 through 10

1.8822 1.7497 1.6449 1.5602
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Compute the Riemann zeta function for the matrix of the symbolic
expressions:

syms x y;
zeta([x 2; 4 x + y])

The result is:

ans =
[ zeta(x), pi^2/6]
[ pi^4/90, zeta(x + y)]

Differentiate the Riemann zeta function:

diff(zeta(x), x, 3)

The result is:

ans =
zeta(x, 3)
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Purpose z-transform

Syntax F = ztrans(f)
F = ztrans(f, w)
F = ztrans(f, k, w)

Description F = ztrans(f) is the z-transform of the scalar symbol f with default
independent variable n. The default return is a function of z.

f f n F F z= ⇒ =( ) ( )

The z-transform of f is defined as

F z
f n

zn
( )

( )=
∞

∑
0

where n is f’s symbolic variable as determined by symvar. If f = f(z),
then ztrans(f) returns a function of w.

F = F(w)

F = ztrans(f, w) makes F a function of the symbol w instead of the
default z.

F w
f n

wn
( )

( )=
∞

∑
0

F = ztrans(f, k, w) takes f to be a function of the symbolic variable
k.

F w
f k

wk
( )

( )=
∞

∑
0
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Examples
Z-Transform MATLAB Operation

f(n) = n4

Z f f n z n

n
[ ] = −

=

∞

∑ ( )
0

= + + +
−

z z z z

z

( )

( )

3 2

5
11 11 1

1

syms n;
f = n^4;
ztrans(f)

ans =
(z^4 + 11*z^3 + 11*z^2
+ z)/(z - 1)^5

g(z) = az

Z g g z w z

z
[ ] = −

=

∞

∑ ( )
0

=
−
w

w a

syms a z;
g = a^z;
ztrans(g)

ans =
-w/(a - w)

f(n) = sin(an)

Z f f n w n

n
[ ] = −

=

∞

∑ ( )
0

=
− +

w a

w a w

sin

cos1 2 2

syms a n w;
f = sin(a*n);
ztrans(f, w)

ans =
(w*sin(a))/(w^2 -
2*cos(a)*w + 1)

See Also fourier, iztrans, laplace
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IndexSymbols and Numerics
' 6-3
.' 6-3
* 6-2
+ 6-2
- 6-2
. 6-3
/ 6-3
^ 6-3
.* 6-2
./ 6-3
.^ 6-3
\\ 3-69 6-2

A
Airy differential equation 3-99
Airy function 3-99
algebraic equations

solving 6-167
arithmetic operations 6-2

left division
array 6-3
matrix 6-2

matrix addition 6-2
matrix subtraction 6-2
multiplication

array 6-2
matrix 6-2

power
array 6-3
matrix 6-3

right division
array 6-3
matrix 6-3

transpose
array 6-3
matrix 6-3

Assigning variables to MuPAD notebooks 6-90
6-157

B
backslash operator 3-69
beam equation 3-104
Bernoulli numbers 3-121 6-129
Bernoulli polynomials 3-121 6-129
Bessel functions 3-121 6-129

differentiating 3-5
integrating 3-15

besselj 3-5
besselk 3-100
beta function 3-121 6-129
binomial coefficients 3-121 6-129

C
Calculations

propagating 4-16
calculus 3-2

example 3-22
extended example 3-30

ccode 6-5
ceil 6-7
characteristic polynomial

poly function 6-145
relation to eigenvalues 3-72
Rosser matrix 3-75

Chebyshev polynomial 3-125 6-133
Choosing symbolic engine 6-179
circuit analysis

using the Laplace transform for 3-110
circulant matrix

eigenvalues 3-55
symbolic 2-9

clear all 6-10
clearing assumptions

symbolic engine 2-31
clearing variables

symbolic engine 2-31
coeffs 6-11
collect 3-43 6-13
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colspace 6-14
column space 3-70
complementary error function 3-121 6-129
complex conjugate 6-17
complex number

imaginary part of 6-100
real part of 6-152

complex symbolic variables 2-2
compose 6-15
conj 2-30 6-17
converting numeric matrices to symbolic

form 2-10
cosine integral function 6-18
cosine integrals 3-121 6-129
cosint 6-18

D
Dawson’s integral 3-121 6-129
decimal symbolic expressions 2-18
default symbolic variable 2-25
definite integration 3-14
det 6-20
diag 6-21
diff 3-2 6-24
difference equations

solving 3-116
differentiation 3-2
diffraction 3-126
digamma function 3-121 6-129
digits 2-19 6-26
dirac 6-28
Dirac Delta function 3-104
discrim 3-89
doc 6-29
double 6-31

converting to floating-point with 3-63
dsolve 6-32

examples 3-97

E
eig 3-72 6-38
eigenvalue trajectories 3-82
eigenvalues 6-38

computing 3-72
sensitive 3-83

eigenvector 3-73
elliptic integrals 3-121 6-129
emlBlock 6-41
Environment 1-3
eps 2-18
error function 3-121 6-129
Euler polynomials 3-121 6-129
evalin 6-47
expand 6-49

examples 3-44
expm 6-48
exponential integrals 3-121 6-129
ezcontour 6-51

F
factor 6-72

example 3-45
findsym 6-75
finverse 6-77
fix 6-78
floating-point arithmetic 3-60

IEEE 3-61
floating-point symbolic expressions 2-17
floor 6-79
format 3-61
fortran 6-80
fourier 6-82
Fourier transform 3-102 6-82
frac 6-85
Fresnel integral 3-121 6-129
function calculator 6-86
functional composition 6-15
functional inverse 6-77
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funtool 6-86

G
Gamma function 3-121 6-129
Gegenbauer polynomial 3-125 6-133
generalized hypergeometric function 3-121 6-129
Givens transformation 3-76

with basic operations 3-66
golden ratio 2-7

H
Handle

MuPAD 4-12
harmonic function 3-121 6-129
heaviside 6-91
Heaviside function 3-107
Help

MuPAD 6-29
Hermite polynomial 3-125 6-133
Hilbert matrix

converting to symbolic 2-10
with basic operations 3-68

horner 6-92
example 3-45

hyperbolic cosine integral 3-121 6-129
hyperbolic sine integral 3-121 6-129
hypergeometric function 3-121 6-129

I
IEEE floating-point arithmetic 3-61
ifourier 6-95
ilaplace 6-97
imag 6-100
incomplete Gamma function 3-121 6-129
int 3-12 6-101

example 3-12
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